Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Cách tìm giao tuyến của hai mặt phẳng (cực hay, chi tiết)

by Tranducdoan
14/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Cách tìm giao tuyến của hai mặt phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm giao tuyến của hai mặt phẳng.

Mục Lục Bài Viết

  1. Cách tìm giao tuyến của hai mặt phẳng (cực hay, chi tiết)
    1. A. Phương pháp giải
    2. B. Ví dụ minh họa
    3. C. Bài tập trắc nghiệm
    4. D. Bài tập tự luyện

Cách tìm giao tuyến của hai mặt phẳng (cực hay, chi tiết)

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

A. Phương pháp giải

Muốn tìm giao tuyến của hai mặt phẳng: ta tìm hai điểm chung thuộc cả hai mặt phẳng. Nối hai điểm chung đó được giao tuyến cần tìm.

Về dạng này điểm chung thứ nhất thường dễ tìm. Điểm chung còn lại các bạn phải tìm hai đường thẳng lần lượt thuộc hai mặt phẳng, đồng thời chúng lại thuộc mặt phẳng thứ ba và chúng không song song. Giao điểm của hai đường thẳng đó là điểm chung thứ hai.

Chú ý: Giao tuyến là đường thẳng chung của hai mặt phẳng, có nghĩa là giao tuyến là đường thẳng vừa thuộc mặt phẳng này vừa thuộc mặt phẳng kia.

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Tìm mệnh đề sai?

A. Hình chóp S.ABCD có 4 mặt bên.

B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO.

C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI.

D. Đường thẳng SO nhìn thấy nên được biểu diễn bằng nét đứt.

Lời giải

Xét các phương án:

+ Phương án A:

Hình chóp S.ABCD có 4 mặt bên là: (SAB); (SBC); (SCD) và (SAD). Do đó A đúng.

+ Phương án B:

Ta có:

Do đó B đúng

+ Tương tự, ta có SI = (SAD) ∩ (SBC). Do đó C đúng.

+ Đường thẳng SO không nhìn thấy nên được biểu diễn bằng nét đứt. Do đó D sai. Chọn D.

Ví dụ 2: Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).

A. SO trong đó O là giao điểm của AC và BD.

B. SI trong đó I là giao điểm của AB và CD.

C. SE trong đó E là giao điểm của AD và BC.

D. Đáp án khác

Lời giải

+ Ta có : S ∈ (SAC) ∩ (SBD) (1)

+ Trong mp(ABCD) gọi giao điểm của AC và BD là O. ( bạn đọc tự vẽ hình)

– Vì

+ Từ (1) và (2) suy ra SO = (SAC) ∩ (SBD)

Chọn A

Ví dụ 3: Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD)

A. SO trong đó O là giao điểm của AC và BD

B. SI trong đó I là giao điểm của AB và CD

C. SE trong đó E là giao điểm của AD và BC

D. Đáp án khác

Lời giải

+ Ta có: S ∈ (SAB) ∩ (SCD) (1)

+ Trong mp(ABCD) gọi giao điểm của AB và CD là I. (bạn đọc tự vẽ hình)

Vì

+ Từ (1) và (2) suy ra SI = (SAB) ∩ (SCD)

Chọn B

Ví dụ 4: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Giao tuyến của mặt phẳng (ACD) và (GAB) là:

A. AN trong đó N là trung điểm CD

B. AM trong đó M là trung điểm của AB.

C. AH trong đó H là hình chiếu của A lên BG.

D. AK trong đó K là hình chiếu của C lên BD.

Lời giải

+ Ta có: A ∈ (ABG) ∩ (ACD) (1)

+ Gọi N là giao điểm của BG và CD. Khi đó N là trung điểm CD.

Từ (1) và (2) suy ra: NA = (ABG) ∩ (ACD)

Chọn A.

Ví dụ 5: Cho điểm A không nằm trên mp(α) – chứa tam giác BCD . Lấy E; F là các điểm lần lượt nằm trên cạnh AB; AC. Khi EF và BC cắt nhau tại I; thì I không là điểm chung của 2 mặt phẳng nào sau đây ?

A. (BCD) và (DEF)

B. (BCD) và (ABC)

C. (BCD) và (AEF)

D. (BCD) và (ABD)

Lời giải

+ Do I là giao điểm của EF và BC nên I ∈ BC; I ∈ (BCD). (1)

+ Hơn nữa I ∈ EF mà

Từ (1) và (2) suy ra:

Chọn D

Ví dụ 6: Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và CD. Giao tuyến của 2 mặt phẳng (MBD) và (ABN) là:

A. Đường thẳng MN

B. Đường thẳng AM

C. Đường thẳng BG (G là trọng tâm tam giác ACD)

D. Đường thẳng AH ( H là trực tâm tam giác ACD)

Lời giải

+ Ta có: B ∈ (MBD) ∩ (ABN). (1)

+ Vì M; N lần lượt là trung điểm của AC và CD nên suy ra AN và DM là hai trung tuyến của tam giác ACD. Gọi giao điểm của AN và DM là G. Khi đó: G là trọng tâm tam giác ACD

Từ (1) và ( 2) suy ra: BG = (ABN) ∩ (MBD)

Chọn C

Ví dụ 7: Cho hình chóp S.ABCD có đáy là hình thang ABCD ( AB// CD). Khẳng định nào sau đây sai?

A. Hình chóp S.ABCD có mặt bên

B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD)

C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC)

D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD

Lời giải

Chọn D

+ Hình chóp S.ABCD có mặt bên (SAB), (SBC); (SCD) và (SAD) nên A đúng.

+ S và O là hai điểm chung của (SAC) và (SBD) nên B đúng.

+ S và I là hai điểm chung của (SAD) và (SBC) nên C đúng.

+ Giao tuyến của (SAB) và (SAD) là SA, rõ ràng SA không thể là đường trung bình của hình thang ABCD.

Ví dụ 8: Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I và J là hai điểm trên cạnh BC; BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng:

A. KM B. AK C. MF D. KF

Lời giải

Chọn D.

+ Do K là giao điểm của IJ và CD nên: K ∈ (MIJ) ∩ (ACD) (1)

+ Ta có F là giao điểm của ME và AH

Mà AH ⊂ (ACD), ME ⊂ (MIJ) nên F ∈ (MIJ) ∩ (ACD) (2)

Từ (1) và (2) có (MIJ) ∩ (ACD) = KF

Ví dụ 9: Cho hình chóp S.ABCD. Gọi I là trung điểm của SD, J là điểm trên SC và không trùng trung điểm SC. Giao tuyến của hai mặt phẳng (ABCD) và (AIJ) là:

A. AK với K là giao điểm IJ và BC

B. AH với H là giao điểm IJ và AB

C. AG với G là giao điểm IJ và AD

D. AF với F là giao điểm IJ và CD

Lời giải

Chọn D.

+ A là điểm chung thứ nhất của (ABCD) và (AIJ)

+ IJ và CD cắt nhau tại F, còn IJ không cắt BC; AD; AB

Nên F là điểm chung thứ hai của (ABCD) và (AIJ)

Vậy giao tuyến của (ABCD) và (AIJ) là AF

C. Bài tập trắc nghiệm

Câu 1: Cho tứ diện S.ABC. Lấy điểm E; F lần lượt trên đoạn SA; SB và điểm G trọng tâm tam giác ABC . Tìm giao tuyến của mp(EFG) và mp(SBC)

A. FM trong đó M là giao điểm của AB và EG.

B. FN trong đó N là giao điểm của AB và EF.

C. FT trong đó T là giao điểm của EG và SB.

D. Đáp án khác

Lời giải:

+ Trong mp(SAB); gọi H là giao điểm của EF và AB.

+ Trong mp(ABC); gọi HG cắt AC; BC lần lượt tại I và J.

+ Ta có:

Và

Từ (1) và (2) suy ra: JF = (EFG) ∩ (SBC)

Chọn D

Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M; N lần lượt là trung điểm AD và BC. Gọi O là giao điểm của AC và BD. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là:

A. SD

B. SO

C. SG (G là trung điểm của AB)

D. SF (F là trung điểm của MD)

Lời giải:

+ Ta có: S ∈ (SMN) ∩ (SAC) (1)

+ Trong mặt phẳng (ABCD) có:

AM = NC = 1/2 AD và AM // NC

⇒ Tứ giác AM CN là hình bình hành.

Mà O là trung điểm của AC nên O cũng là trung điểm của MN (tính chất hình bình hành)

+ Ta có:

Từ (1) và (2) suy ra: SO = (SAC) ∩ (SMN)

Chọn B

Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi I và J lần lượt là trung điểm của SA và SB; gọi O là tâm của hình chữ nhật ABCD. Khẳng định nào sau đây sai?

A. Tứ giác IJCD là hình thang

B. Giao tuyến của (SAB) và (IBC) là IB.

C. Giao tuyến của (SBD) và (JCD) là JD.

D. Giao tuyến của (IAC) và (JBD) là AO.

Lời giải:

+ Ta có IJ là đường trung bình của tam giác SAB

⇒ IJ // AB

Mà AB // CD ( vì ABCD là hình chữ nhật)

⇒ IJ // CD

⇒ Tứ giác IJCD là hình thang. Do đó A đúng.

+ Ta có:

I ∈ (SAB) ∩ (IBC) Và B ∈ (SAB) ∩ (IBC)

⇒ IB = ( SAB) ∩ (IBC)

Do đó B đúng

+ Ta có:

J ∈ (SBD) ∩ (JBD) Và D ∈ (SBD) ∩ (JBD)

⇒ JD = (SBD) ∩ (JBD)

Do đó C đúng

+ Trong mặt phẳng (IJCD) , gọi M là giao điểm của IC và JD

Khi đó: giao tuyến của (IAC) và (JBD) là MO

Do đó D sai

Chọn D

Câu 4: Cho hình chóp S.ABCD có đáy là hình thang (AD // BC). Gọi M là trung điểm CD. Giao tuyến của hai mặt phẳng (MSB) và (SAC) là:

A. SI (I là giao điểm của AC và BM)

B. SJ (J là giao điểm của AM và BD)

C. SO (O là giao điểm của AC và BD)

D. SP (P là giao điểm của AB và CD)

Lời giải:

+ Ta có:

S là điểm chung thứ nhất giữa hai mặt phẳng (SBM) và (SAC) (1)

+ Ta có:

Từ (1) và (2) suy ra: SI = (SBM) ∩ (SAC)

Chọn A

Câu 5: Cho 4 điểm A; B; C; D không đồng phẳng. Gọi I và K lần lượt là trung điểm của AD và BC. Tìm giao tuyến của (IBC) và (KAD) là

A. IK B. BC C. AK D. DK

Lời giải:

Vậy giao tuyến của hai mặt phẳng (IBC) và (KAD) là IK

Chọn A

Câu 6: Cho hình chóp S. ABCD có đáy hình thang (AB // CD). Gọi I là giao điểm của AC và BD. Trên cạnh SB; lấy điểm M. Tìm giao tuyến của hai mặt phẳng (ADM) và (SAC).

A. SI

B. AE với E là giao điểm của DM và SI

C. DM

D. DE với E là giao điểm của DM và SI

Lời giải:

+ Ta có: A ∈ (ADM) ∩ (SAC) (1)

+ Trong mặt phẳng (SBD), gọi E là giao điểm của SI và DM .

Ta có:

E ∈ SI ⊂ (SAC) nên E ∈ (SAC)

E ∈ DM ⊂ (ADM) nên E ∈ (ADM)

Do đó E ∈ (ADM) ∩ (SAC) (2)

Từ (1) và (2) suy ra: EA = (ADM) ∩ (SAC)

Chọn B

Câu 7: Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J là 2 điểm lần lượt trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H; K lần lượt là giao điểm của IJ với CD; MH và AC. Tìm giao tuyến của 2 mặt phẳng (ACD) và (IJM):

A. KI B. KJ C. MI D. MH

Lời giải:

+ Trong mặt phẳng (BCD); ta có IJ cắt CD tại H nên H ∈ (ACD)

+ 3 điểm H; I và J thẳng hàng suy ra bốn điểm M; I; J; H đồng phẳng

⇒ Trong mặt phẳng (IJH), MH cắt IJ tại H và MH ⊂ (IJM) (1)

+ Mặt khác:

Từ (1) và (2) suy ra: MH = (ACD) ∩ (IJM)

Chọn D

Câu 8: Cho tứ diện ABCD có G là trọng tâm tam giác BCD, M là trung điểm CD, I là điểm trên đoạn thẳng AG, BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

A. AM = (ACD) ∩ (ABG)

B. A; J; M thẳng hàng

C. J là trung điểm AM

D DJ = (ACD) ∩ (BDJ)

Lời giải:

Chọn C

vậy A đúng

+ ba điểm A; J và M cùng thuộc hai mặt phẳng phân biệt (ACD) và (ABG) nên A; J; M thẳng hàng, vậy B đúng.

+ Vì I là điểm tùy ý trên AG nên J không phải lúc nào cũng là trung điểm của AM.

Câu 9: Cho hình chóp S.ABCD có đáy là hình thang ABCD; AD//BC. Gọi I là giao điểm của AB và CD, M là trung điểm SC. DM cắt mặt phẳng (SAB) tại J . Khẳng định nào sau đây sai?

A. S, I; J thẳng hàng

B. DM ⊂ mp(SCI)

C. JM ⊂ mp(SAB)

D. SI = (SAB) ∩ (SCD)

Lời giải:

Chọn C

+ Ba điểm S; I và J thẳng hàng vì ba điểm cùng thuộc hai mp (SAB) và (SCD) nên A đúng

Khi đó; giao tuyến của hai mặt phẳng (SAB) và (SCD) là SI

⇒ D đúng

+ M ∈ SC ⇒ M ∈ (SCI) nên DM ⊂ mp(SCI), vậy B đúng

+ M ∉ (SAB) nên JM ⊄ mp(SAB). Vậy C sai

D. Bài tập tự luyện

Bài 1. Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Tìm mệnh đề sai? Xác định giao tuyến giữa 2 mặt phẳng:

a) (SAC) và (SBD).

b) (SAD) và (SBC)

Bài 2. Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD).

Bài 3. Cho tứ giác ABCD sao cho các cạnh đối không song song với nhau. Lấy một điểm S không thuộc mặt phẳng (ABCD). Xác định giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD).

Bài 4. Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Xác định giao tuyến của mặt phẳng (ACD) và (GAB).

Bài 5. Cho hình chóp S.ABC. Gọi K, M lần lượt là hai điểm trên cạnh SA và SC. Gọi N là trung điểm của cạnh BC. Tìm giao tuyến của các cặp mặt phẳng sau:

a) (SAN) và (ABM).

b) (SAN) và (BCK).

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Câu hỏi trắc nghiệm lý thuyết về đường thẳng và mặt phẳng
  • Cách tìm giao điểm của đường thẳng và mặt phẳng
  • Cách tìm thiết diện của hình chóp
  • Cách chứng minh 3 điểm thẳng hàng, 3 đường thẳng đồng quy
  • Cách tìm quỹ tích giao điểm của hai đường thẳng
Previous Post

Mẫu thông báo liên hoan công ty ấn tượng nhất 2025

Next Post

10+ Biểu hiện của ước mơ (điểm cao)

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Gợi ý chi tiết đáp án môn toán thi tốt nghiệp THPT 2025 toàn bộ 24 mã đề

by Tranducdoan
14/01/2026
0
0

Chiều 26/6, hơn 1,1 triệu thí sinh kết thúc bài thi môn toán - môn thi bắt buộc cùng với...

Bộ 18 đề thi học kì 2 Toán 6 Kết nối tri thức năm 2026

by Tranducdoan
14/01/2026
0
0

Đề thi Toán 6 cuối học kì 2 năm 2025 cấu trúc mới Bộ đề thi học kì 2 Toán...

Trọn bộ lý thuyết về phương trình đường tròn lớp 10 – VUIHOC Toán

by Tranducdoan
14/01/2026
0
0

1. Lý thuyết về phương trình đường tròn 1.1. Phương trình đường tròn Dưới đây VUIHOC sẽ tổng hợp kiến...

Ứng dụng đạo hàm để giải quyết một số vấn đề liên quan đến thực tiễn lớp 12 (Lý thuyết Toán 12 Kết nối tri thức)

by Tranducdoan
14/01/2026
0
0

Với tóm tắt lý thuyết Toán 12 Bài 5: Ứng dụng đạo hàm để giải quyết một số vấn đề...

Load More
Next Post

10+ Biểu hiện của ước mơ (điểm cao)

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Cấu Trúc Be Able To: Cách Dùng Và Cấu Trúc Thường Gặp

14/01/2026

Gợi ý chi tiết đáp án môn toán thi tốt nghiệp THPT 2025 toàn bộ 24 mã đề

14/01/2026

Người ở bến sông Châu – Tác giả tác phẩm (mới 2026) – Ngữ văn lớp 10 Cánh diều

14/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.