Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Bí Quyết Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc Hai: Hướng Dẫn Chi Tiết

by Tranducdoan
29/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Trong toán học, việc làm quen và thành thạo các phép toán với căn thức bậc hai là một kỹ năng nền tảng cực kỳ quan trọng, đặc biệt đối với học sinh trung học. Nhiều khi, chúng ta phải đối mặt với những biểu thức phức tạp, cồng kềnh chứa căn thức, đòi hỏi phải được biến đổi đơn giản biểu thức chứa căn thức bậc hai để dễ dàng tính toán, so sánh hoặc giải quyết các bài toán liên quan. Bài viết này sẽ cung cấp một cái nhìn toàn diện, từ khái niệm cơ bản đến các phương pháp biến đổi nâng cao, giúp bạn nắm vững kiến thức này một cách hiệu quả nhất.

Mục Lục Bài Viết

  1. I. Căn Thức Bậc Hai: Nền Tảng Cần Nắm Vững
    1. 1. Định nghĩa căn thức bậc hai
    2. 2. Điều kiện xác định của căn thức
  2. II. Các Phép Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc Hai Cơ Bản
    1. 1. Đưa thừa số ra ngoài dấu căn
      1. Cách thực hiện:
    2. 2. Đưa thừa số vào trong dấu căn
    3. 3. Khử mẫu của biểu thức lấy căn
    4. 4. Trục căn thức ở mẫu
      1. Các trường hợp thường gặp:
    5. 5. Áp dụng hằng đẳng thức
      1. Một số hằng đẳng thức quan trọng:
  3. III. Thứ Tự Thực Hiện Phép Tính Và Kết Hợp Các Biến Đổi
    1. 1. Quy tắc chung
    2. 2. Ví dụ minh họa chi tiết
      1. Bước 1: Đơn giản hóa từng căn thức
      2. Bước 2: Thay vào biểu thức và thực hiện phép tính
      3. Bước 1: Xác định điều kiện
      4. Bước 2: Phân tích mẫu số
      5. Bước 3: Quy đồng mẫu số và rút gọn
  4. IV. Những Sai Lầm Thường Gặp Khi Biến Đổi Căn Thức
  5. V. Lợi Ích Của Việc Thành Thạo Biến Đổi Căn Thức
  6. Kết Luận
  7. Những Câu Hỏi Thường Gặp (FAQ) Về Biến Đổi Căn Thức Bậc Hai
    1. 1. Biến đổi đơn giản biểu thức chứa căn thức bậc hai là gì?
    2. 2. Tại sao cần biến đổi đơn giản biểu thức chứa căn thức bậc hai?
    3. 3. Khi nào thì một biểu thức căn được coi là đã đơn giản nhất?
    4. 4. Như thế nào để tránh sai lầm khi biến đổi biểu thức chứa căn thức bậc hai?
    5. 5. Có những quy tắc cơ bản nào để biến đổi đơn giản biểu thức chứa căn thức bậc hai?
    6. 6. Ai cần học cách biến đổi đơn giản biểu thức chứa căn thức bậc hai?

I. Căn Thức Bậc Hai: Nền Tảng Cần Nắm Vững

Trước khi đi sâu vào các kỹ thuật biến đổi, chúng ta cần ôn lại một số khái niệm cơ bản về căn thức bậc hai. Đây là chìa khóa để hiểu rõ bản chất của các phép toán sau này, cũng như để biến đổi đơn giản biểu thức chứa căn thức bậc hai một cách chính xác.

1. Định nghĩa căn thức bậc hai

Căn thức bậc hai của một số a không âm, ký hiệu là √a, là một số x không âm sao cho x² = a. Ví dụ, √9 = 3 vì 3² = 9 và 3 ≥ 0.

2. Điều kiện xác định của căn thức

Một biểu thức √A được xác định (có nghĩa) khi và chỉ khi biểu thức A dưới dấu căn không âm, tức là A ≥ 0. Việc xác định điều kiện này là bước đầu tiên và vô cùng quan trọng khi làm việc với các biểu thức chứa căn, giúp tránh những sai sót không đáng có và đảm bảo tính hợp lệ của các phép biến đổi.

II. Các Phép Biến Đổi Đơn Giản Biểu Thức Chứa Căn Thức Bậc Hai Cơ Bản

Đây là phần cốt lõi của bài viết, nơi chúng ta sẽ tìm hiểu chi tiết các quy tắc và kỹ thuật giúp biến đổi đơn giản biểu thức chứa căn thức bậc hai. Nắm vững các phép biến đổi này sẽ mở ra cánh cửa giải quyết mọi bài toán liên quan một cách hiệu quả.

1. Đưa thừa số ra ngoài dấu căn

Đây là một trong những kỹ thuật đầu tiên để biến đổi đơn giản biểu thức chứa căn thức bậc hai, giúp giảm độ phức tạp của biểu thức. Quy tắc này dựa trên công thức √(A²B) = |A|√B (với B ≥ 0). Nếu A ≥ 0 thì √(A²B) = A√B. Mục đích là làm cho biểu thức dưới dấu căn trở nên “gọn” hơn, không còn chứa các số chính phương.

Cách thực hiện:

  1. Phân tích số dưới dấu căn thành tích của một số chính phương lớn nhất và một số khác.
  2. Sử dụng công thức để đưa số chính phương đó ra ngoài dấu căn.

Ví dụ:

  • √12 = √(4 × 3) = √4 × √3 = 2√3
  • √(18x³) = √(9x² × 2x) = √(9x²) × √2x = 3|x|√2x (với x ≥ 0 thì 3x√2x)

2. Đưa thừa số vào trong dấu căn

Đây là phép biến đổi ngược lại với phép đưa thừa số ra ngoài, dựa trên công thức A√B = √(A²B) (với A ≥ 0, B ≥ 0). Phép biến đổi này thường được dùng để so sánh các biểu thức chứa căn hoặc để thực hiện các phép toán cộng, trừ, góp phần vào việc biến đổi đơn giản biểu thức chứa căn thức bậc hai.

Ví dụ:

  • 3√5 = √(3² × 5) = √(9 × 5) = √45
  • x√2 = √(x² × 2) = √2x² (với x ≥ 0)

3. Khử mẫu của biểu thức lấy căn

Khi biểu thức dưới dấu căn có chứa phân số, chúng ta cần khử mẫu để làm cho biểu thức đơn giản hơn. Đây là một bước quan trọng trong quá trình biến đổi đơn giản biểu thức chứa căn thức bậc hai. Quy tắc: √(A/B) = √ (AB/B²) = (√AB) / |B| (với A ≥ 0, B > 0).

Ví dụ: √(2/3) = √((2 × 3)/(3 × 3)) = √(6/9) = √6 / √9 = √6 / 3

4. Trục căn thức ở mẫu

Trục căn thức ở mẫu là một kỹ thuật quan trọng để loại bỏ căn thức khỏi mẫu số của một phân thức. Điều này giúp cho biểu thức trông “đẹp” hơn và dễ tính toán hơn. Việc thành thạo trục căn thức là rất quan trọng để hoàn tất quá trình biến đổi đơn giản biểu thức chứa căn thức bậc hai, đảm bảo biểu thức ở dạng chuẩn.

Các trường hợp thường gặp:

  • Mẫu là √B: Nhân cả tử và mẫu với √B. A/√B = (A√B)/B (với B > 0). Ví dụ: 1/√2 = (1 × √2)/(√2 × √2) = √2/2
  • Mẫu là A ± √B hoặc √A ± √B: Nhân cả tử và mẫu với biểu thức liên hợp của mẫu. Biểu thức liên hợp của A + √B là A – √B và ngược lại. Biểu thức liên hợp của √A + √B là √A – √B và ngược lại. Chúng ta sử dụng hằng đẳng thức (X – Y)(X + Y) = X² – Y². Ví dụ: 1/(√3 – 1) = (1 × (√3 + 1))/((√3 – 1)(√3 + 1)) = (√3 + 1)/(3 – 1) = (√3 + 1)/2

5. Áp dụng hằng đẳng thức

Các hằng đẳng thức đáng nhớ thường được sử dụng để biến đổi đơn giản biểu thức chứa căn thức bậc hai, đặc biệt là khi rút gọn các biểu thức phức tạp hoặc giải phương trình. Việc này đòi hỏi sự nhận diện nhanh chóng các dạng toán và áp dụng linh hoạt.

Một số hằng đẳng thức quan trọng:

  • (√A)² = A (với A ≥ 0)
  • √(A²) = |A|
  • (√A ± √B)² = A ± 2√AB + B (với A, B ≥ 0)
  • A – B = (√A – √B)(√A + √B) (với A, B ≥ 0)

Ví dụ: Rút gọn √((√5 – 2)²) Áp dụng √(A²) = |A|, ta có: √((√5 – 2)²) = |√5 – 2|. Vì √5 ≈ 2.236 lớn hơn 2, nên √5 – 2 > 0. Do đó, |√5 – 2| = √5 – 2.

“Việc nắm vững các hằng đẳng thức và áp dụng linh hoạt vào các bài toán căn thức không chỉ giúp đơn giản hóa biểu thức mà còn rèn luyện tư duy logic, là nền tảng vững chắc cho các kiến thức toán cao hơn.” – Giáo sư Nguyễn Văn A, Chuyên gia Toán học.

III. Thứ Tự Thực Hiện Phép Tính Và Kết Hợp Các Biến Đổi

Trong thực tế, một biểu thức chứa căn thức phức tạp thường đòi hỏi sự kết hợp của nhiều phép biến đổi khác nhau. Việc thực hiện đúng thứ tự là yếu tố then chốt để đạt được kết quả chính xác và tối ưu, giúp biến đổi đơn giản biểu thức chứa căn thức bậc hai một cách bài bản.

1. Quy tắc chung

  1. Xác định điều kiện xác định của biểu thức.
  2. Đơn giản hóa từng căn thức riêng lẻ bằng cách đưa thừa số ra ngoài dấu căn hoặc khử mẫu.
  3. Trục căn thức ở mẫu nếu có.
  4. Thực hiện các phép toán (cộng, trừ, nhân, chia) theo thứ tự ưu tiên:
    • Trong ngoặc trước.
    • Nhân, chia trước.
    • Cộng, trừ sau.
  5. Rút gọn biểu thức cuối cùng (nếu cần).

2. Ví dụ minh họa chi tiết

Hãy cùng áp dụng các kỹ thuật đã học để biến đổi đơn giản biểu thức chứa căn thức bậc hai sau: A = √12 + √27 – 2√3

Bước 1: Đơn giản hóa từng căn thức

  • √12 = √(4 × 3) = 2√3
  • √27 = √(9 × 3) = 3√3

Bước 2: Thay vào biểu thức và thực hiện phép tính

A = 2√3 + 3√3 – 2√3 A = (2 + 3 – 2)√3 A = 3√3

Một ví dụ khác phức tạp hơn: B = (√x / (√x – 2)) – (2 / (√x + 2)) – (4 / (x – 4)) (với x ≥ 0, x ≠ 4)

Bước 1: Xác định điều kiện

x ≥ 0, x ≠ 4 (đã cho).

Bước 2: Phân tích mẫu số

Ta thấy x – 4 = (√x – 2)(√x + 2) (sử dụng hằng đẳng thức). Đây là mẫu số chung.

Bước 3: Quy đồng mẫu số và rút gọn

B = (√x(√x + 2)) / ((√x – 2)(√x + 2)) – (2(√x – 2)) / ((√x + 2)(√x – 2)) – (4 / ((√x – 2)(√x + 2))) B = (x + 2√x – (2√x – 4) – 4) / ((√x – 2)(√x + 2)) B = (x + 2√x – 2√x + 4 – 4) / (x – 4) B = x / (x – 4)

Qua ví dụ này, bạn có thể thấy rằng việc kết hợp linh hoạt các phép biến đổi và hằng đẳng thức là chìa khóa để biến đổi đơn giản biểu thức chứa căn thức bậc hai hiệu quả.

IV. Những Sai Lầm Thường Gặp Khi Biến Đổi Căn Thức

Dù đã nắm vững các quy tắc, nhiều người vẫn mắc phải một số sai lầm phổ biến. Nhận diện và tránh chúng sẽ giúp bạn nâng cao độ chính xác khi biến đổi đơn giản biểu thức chứa căn thức bậc hai.

  • Quên điều kiện xác định: Luôn kiểm tra điều kiện để biểu thức dưới dấu căn không âm (A ≥ 0) và mẫu số khác 0. Đây là lỗi cơ bản nhưng rất thường gặp.
  • Sai lầm với dấu giá trị tuyệt đối: Khi đưa A² ra ngoài dấu căn, phải là |A|, không phải lúc nào cũng là A. Việc này đặc biệt quan trọng khi làm việc với biến số.
  • Nhầm lẫn phép cộng/trừ căn thức: √A + √B ≠ √(A+B). Chỉ có thể cộng/trừ các căn thức đồng dạng (cùng biểu thức dưới dấu căn). Ví dụ: 2√3 + 5√3 = 7√3, nhưng √2 + √3 không thể đơn giản hóa thêm.
  • Sai sót khi trục căn thức: Không nhân đủ cả tử và mẫu với biểu thức liên hợp, hoặc tính toán sai hằng đẳng thức. Cần kiểm tra kỹ từng bước để hoàn tất việc biến đổi đơn giản biểu thức chứa căn thức bậc hai.
  • Không phân tích triệt để: Để lại số chính phương dưới dấu căn khi có thể đưa ra ngoài, khiến biểu thức chưa đạt dạng đơn giản nhất.

V. Lợi Ích Của Việc Thành Thạo Biến Đổi Căn Thức

Việc thành thạo kỹ năng biến đổi đơn giản biểu thức chứa căn thức bậc hai mang lại nhiều lợi ích không chỉ trong môn Toán mà còn phát triển tư duy logic nói chung, giúp bạn tự tin hơn trong học tập và giải quyết vấn đề.

  • Giải quyết bài tập dễ dàng hơn: Các bài toán về phương trình, bất phương trình, rút gọn biểu thức sẽ trở nên đơn giản hơn rất nhiều khi bạn nắm vững các phép biến đổi này.
  • Tăng cường khả năng tư duy: Rèn luyện kỹ năng phân tích, tổng hợp và áp dụng linh hoạt các quy tắc, giúp phát triển tư duy phản biện.
  • Nền tảng cho kiến thức cao hơn: Căn thức là một phần quan trọng trong đại số, hình học (ví dụ: định lý Pitago), và là tiền đề cho các môn học khoa học tự nhiên khác.
  • Cải thiện điểm số: Giúp bạn tự tin hơn trong các kỳ thi và đạt được kết quả tốt hơn, đặc biệt trong các phần thi liên quan đến biểu thức đại số và căn thức.

Thực hành là yếu tố then chốt để nắm vững kỹ năng này. Đừng ngại thử sức với nhiều dạng bài tập khác nhau và tìm hiểu sâu hơn về từng quy tắc để có thể biến đổi đơn giản biểu thức chứa căn thức bậc hai một cách thuần thục.

Kết Luận

Qua bài viết này, hy vọng bạn đã có cái nhìn tổng quan và chi tiết về cách biến đổi đơn giản biểu thức chứa căn thức bậc hai. Từ việc hiểu rõ định nghĩa, điều kiện xác định đến việc áp dụng linh hoạt các phép biến đổi như đưa thừa số ra/vào dấu căn, khử mẫu, trục căn thức và sử dụng hằng đẳng thức, mỗi bước đều đóng vai trò quan trọng trong quá trình đơn giản hóa biểu thức. Hãy kiên trì luyện tập, tránh những sai lầm phổ biến và bạn sẽ nhanh chóng trở thành một “chuyên gia” trong việc biến đổi căn thức. Đây là một kỹ năng không thể thiếu để chinh phục các bài toán toán học phức tạp.

Những Câu Hỏi Thường Gặp (FAQ) Về Biến Đổi Căn Thức Bậc Hai

1. Biến đổi đơn giản biểu thức chứa căn thức bậc hai là gì?

Là quá trình sử dụng các quy tắc toán học để rút gọn biểu thức có chứa căn bậc hai về dạng đơn giản nhất, thường là không còn số chính phương dưới dấu căn và không còn căn thức ở mẫu số. Đây là kỹ năng nền tảng trong đại số.

2. Tại sao cần biến đổi đơn giản biểu thức chứa căn thức bậc hai?

Việc đơn giản hóa giúp biểu thức dễ tính toán, so sánh, giải phương trình và bất phương trình hơn. Nó cũng là một yêu cầu chuẩn trong trình bày lời giải toán học, giúp tăng tính minh bạch và chính xác.

3. Khi nào thì một biểu thức căn được coi là đã đơn giản nhất?

Một biểu thức căn được xem là đơn giản nhất khi không còn thừa số chính phương nào nằm dưới dấu căn, không có căn thức ở mẫu số và các căn thức đồng dạng đã được cộng/trừ gọn. Điều kiện này đảm bảo biểu thức ở dạng tối ưu.

4. Như thế nào để tránh sai lầm khi biến đổi biểu thức chứa căn thức bậc hai?

Để tránh sai lầm, bạn cần luôn kiểm tra điều kiện xác định, cẩn thận với dấu giá trị tuyệt đối khi đưa thừa số ra ngoài căn, và áp dụng đúng các hằng đẳng thức cùng quy tắc trục căn thức. Thực hành thường xuyên sẽ giúp bạn thuần thục.

5. Có những quy tắc cơ bản nào để biến đổi đơn giản biểu thức chứa căn thức bậc hai?

Các quy tắc cơ bản bao gồm đưa thừa số ra/vào dấu căn, khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu và áp dụng các hằng đẳng thức đáng nhớ để rút gọn. Nắm vững chúng là chìa khóa để làm chủ kỹ năng này.

6. Ai cần học cách biến đổi đơn giản biểu thức chứa căn thức bậc hai?

Học sinh từ cấp 2 trở lên, đặc biệt là học sinh lớp 9 và 10, cần thành thạo kỹ năng này. Đây là kiến thức nền tảng cho nhiều chủ đề toán học phức tạp hơn trong tương lai, cũng như các ngành khoa học ứng dụng.

Previous Post

Viết đến nổi hay đến nỗi​ đúng? Mẹo phân biệt nổi và nỗi

Next Post

Đáp án trắc nghiệm mô đun 4.0 Tiểu học

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Phương pháp giải và biện luận phương trình bậc hai (cực hay)

by Tranducdoan
29/01/2026
0
0

Bài viết Phương pháp giải và biện luận phương trình bậc hai với phương pháp giải chi tiết giúp học...

MỘT SỐ BÀI TẬP NÂNG CAO VỀ HẰNG ĐẰNG THỨC ĐÁNG NHỚ LỚP 8

by Tranducdoan
29/01/2026
0
0

MATHX gửi quý phụ huynh và các em học sinh một số bài toán nâng cao về hằng đẳng thức...

Đề thi thử hóa thpt quốc gia 2023 Sở Nam Định kì 2

by Tranducdoan
29/01/2026
0
0

Dưới đây là đề Khảo sát chất lương học sinh lớp 12 môn Hóa học kì 2 của Sở GD...

Đề thi Toán lớp 11 học kì 2: Giữa kì và cuối kì [Có đáp án] PDF

by Tranducdoan
29/01/2026
0
0

Đề thi Toán lớp 11 học kì 2 là nguồn tài liệu ôn tập quan trọng mà học sinh lớp...

Load More
Next Post

Đáp án trắc nghiệm mô đun 4.0 Tiểu học

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

30 mẫu thiệp Tết Trung Thu 2025 ✔️ Mới & Đẹp nhất

29/01/2026

Phương pháp giải và biện luận phương trình bậc hai (cực hay)

29/01/2026

45 câu ca dao, tục ngữ, thành ngữ về lòng tự trọng, tự tôn, nhân phẩm, nhân cách con người

29/01/2026
Xoilac TV trực tiếp bóng đá sách online Socolive trực tiếp 789bet https://pihu.in.net/ 68vip Ca Khia TV trực tiếp XoilacTV
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.