Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Đề cương ôn thi giữa kì 2 môn toán 11 chi tiết

by Tranducdoan
05/02/2026
in Toán tổng hợp
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. 1. Trọng tâm kiến thức ôn thi giữa kì 2 môn Toán 11
    1. 1.1 Lũy thừa với số mũ thực
    2. 1.2 Logarit
    3. 1.3 Hàm số mũ, hàm số logarit
    4. 1.4 Hai đường thẳng vuông góc
    5. 1.5 Đường thẳng vuông góc với mặt phẳng
    6. 1.6 Góc giữa đường thẳng và mặt phẳng
  2. 2. Những dạng bài cần chú ý khi ôn thi giữa kì 2 môn Toán 11
    1. 2.1 Dạng bài về lũy thừa
    2. 2.2 Dạng bài về logarit
    3. 2.3 Dạng bài về đường thẳng

1. Trọng tâm kiến thức ôn thi giữa kì 2 môn Toán 11

1.1 Lũy thừa với số mũ thực

a. Lũy thừa với số mũ nguyên

– Cho n là một số nguyên dương, ta có:

  • Với a là số thực tùy ý: an = a.a….a ( n thừa số).
  • Với a là số thực khác 0: ao = 1 ; a-n = 1/an.
  • Trong biểu thức am, a là cơ số, m là số mũ.

– Với a neq 0, b neq 0, m và n là các số nguyên ta có:

  • am.an = am+n
  • (am)n = am.n
  • frac{a^{m}}{a^{n}}=a^{m-n}
  • (a.b)m = am.bm

– Lưu ý: Nếu a > 1 thì large a^{m}>a^{n}Leftrightarrow m> n ; Nếu 0 < a < 1 thì

b. Lũy thừa với số mũ hữu tỉ

– Cho số thực a và số nguyên dương n. Số b được gọi là căn bậc n của số a nếu bn = a

– Giả sử n, k là các số nguyên dương, m là số nguyên. Khi đó:

  • large (sqrt[n]{a})^{m}=sqrt[n]{a^{m}}
  • = a khi n lẻ ; = |a| khi n chẵn

– Cho số thực a dương và số hữu tỉ r = m/n, trong đó m là số nguyên và n là số nguyên dương. Lũy thừa của a và số mũ r, kí hiệu là ar, xác định bởi ar = am/n =

c. Lũy thừa với số mũ thực

– Cho a là số thực dương và là một số vô tỉ. Xét dãy số hữu tỉ (rn) mà . Khi đó, dãy số có giới hạn xác định và không phụ thuộc vào dãy số hữu tỉ (rn) đã chọn. Giới hạn đó gọi là lũy thừa của a với số mũ , kí hiệu là a.

1.2 Logarit

a. Khái niệm

– Cho a là một số thực dương 1 và M là một số thực dương. Số thực để a = M được gọi là logarit cơ số a của M và kí hiệu là logaM

– Chú ý: Với 0 < a 1, M > 0 và là số thực tùy ý, ta có:

b. Tính chất:

– Quy tắc tính logarit: Giả sử a là số thực dương 1. M và N là các số thực dương, là số thực tùy ý:

  • loga(MN) = logaM + logaN
  • loga(M/N) = logaM – logaN
  • logaM = logaM

– Đổi cơ số logarit: Với các cơ số logarit a và b bất kì ( 0 < a 1, 0 < b 1) và M là số thực dương tùy ý, ta có:

1.3 Hàm số mũ, hàm số logarit

a. Hàm số mũ

– Cho a là số thực dương 1. Hàm số y = ax được gọi là hàm số mũ cơ số a.

– Đồ thị hàm số mũ y = ax

  • Có tập xác định là R và tập giá trị là (0 ; )
  • Đồng biến trên R khi a > 1 và nghịch biến trên R khi 0 < a < 1
  • Liên tục trên R
  • Có đồ thị đi qua các điểm (0;1) ; (1;a) và luôn nằm phía trên trục hoành.

b. Hàm số logrit

– Cho a là số thực dương 1. Hàm số y = logax được gọi là hàm số logarit cơ số a.

– Đồ thị hàm số logarti: y = logax

  • Có tập xác định là (0 ; ) và tập giá trị là R
  • Đồng biến trên (0 ; ) khi a > 1 và nghịch biến trên (0 ; ) khi 0 < a < 1
  • Liên tục trên (0 ; )
  • Có đồ thị đi qua các điểm (1;0); (a;1) và luôn nằm bên phải trục tung.

1.4 Hai đường thẳng vuông góc

a. Góc giữa hai đường thẳng:

– Góc giữa hai đường thẳng m và n trong không gian, kí hiệu là (m,n) là góc giữ hai đường thẳng a và b cùng đi qua một điểm và tương ướng song song với m và n.

b. Hai đường thẳng vuông góc:

– Hai đường thẳng a, b được gọi là vuông góc với nhau (ab) nếu góc giữa chúng bằng 90o.

1.5 Đường thẳng vuông góc với mặt phẳng

a. Đường thẳng vuông góc với mặt phẳng

– Đường thẳng được gọi là vuông góc với mặt phẳng (P) nếu vuông góc với mọi đường thẳng nằm trong (P).

– Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.

b. Tính chất:

– Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

– Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

c. Liên hệ

– Nếu đường thẳng a (P) thì các đường thẳng song song với a cũng vuông góc với ( P).

– Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

– Nếu đường thẳng vuông góc với mặt phẳng (P) thì cũng vuông góc với các mặt phẳng song song với (P).

– Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

– Nếu đường thẳng vuông góc với mặt phẳng (P) thì vuông góc với mọi đường thẳng song song với (P).

– Nếu đường thẳng a và mặt phẳng (P) cùng vuông góc với một đường thẳng thì a nằm trong (P) hoặc song song với (P).

Khóa học DUO cung cấp cho các em nền tảng kiến thức toán vững chắc, bứt phá điểm 9+ trong mọi bài kiểm tra trên lớp.

1.6 Góc giữa đường thẳng và mặt phẳng

a. Phép chiếu vuông góc

– Phép chiếu song song lên mặt phẳng (P) theo phương vuông góc với (P) được gọi là phép chiếu vuông góc lên mặt phẳng (P).

– Định lý 3 đường vuông góc: Cho đường thẳng a và mặt phẳng (P) không vuông góc với nhau. Khi đó một đường thẳng b nằm trong mặt phẳng (P) vuông góc với đường thẳng a khi và chỉ khi b vuông góc với hình chiếu vuông góc a’ của a trên (P).

b. Góc giữa đường thẳng và mặt phẳng:

– Nếu đường thẳng a vuông góc với mặt phẳng (P) thì ta nói rằng góc giữa đường thẳng a và mặt phẳng (P) bằng 90o.

– Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa a và hình chiếu a’ của nó trên (P) được gọi là góc giữa đường thẳng a và mặt phẳng (P).

2. Những dạng bài cần chú ý khi ôn thi giữa kì 2 môn Toán 11

2.1 Dạng bài về lũy thừa

a. Áp dụng tính chất lũy thừa để giải một số bài toán

Bài 1: Tính các phép toán lũy thừa dưới đây:

Lời giải

= 121

Bài 2: So sánh các cặp số

a. và

b. và

c. và

Lời giải:

a. Do cơ số a = 2 > 1 và nên >

b. Do cơ số a = 1/3 và nên < c.

Do 100000 > 8000 nên >

b. Tìm tập xác định của hàm số lũy thừa

Tìm tập xác định của các hàm số sau:

a, y = (1 – x)-1/3

b, y = (x2 – 4x + 3)-2

c, y = (x3 – 8)/3

d, y = (2x – 1)o

Lời giải

a. Hàm số xác định khi 1 – x > 0 x < 1 => TXĐ: D = (; 1)

b. y = (x2 – 4x + 3)-2 có TXĐ: D = R {1;3}

c. y = (x3 – 8)/3 có TXĐ: D = (2; +)

d. y = (2x – 1)o có TXĐ: D = R{1/2}

2.2 Dạng bài về logarit

a. Giải phương trình logarit bằng cách đưa về cùng cơ số

Cách làm:

  • Tìm điều kiện của phương trình (nếu có)
  • Đưa các logarit có mặt trong phương trình về cùng cơ số
  • Biến đổi phương trình về phương trình logarit cơ bản
  • Kiểm tra điều kiện và kết luận.

Ví dụ: Giải phương trình log3(x2 – x +1) = -log1/3(2x – 1)

Lời giải:

log3(x2 – x +1) = -log1/3(2x – 1)

Vậy phương trình có tập nghiệm là {1;2}

b. Giải phương trình logarit bằng cách mũ hóa:

Cách làm:

Phương trình loga[f(x)]=logb[g(x)] (với a>0;a≠1)

Ta đặt loga[f(x)]=logb[g(x)]=t

Khử x trong hệ phương trình để thu được phương trình ẩn t, giải pt này tìm t, từ đó tìm x

Ví dụ: Giải phương trình log3(x + 1) = log2x

Lời giải:

Điều kiện x > 0. Đặt log3(x+1) = log2x = t

Khi đó 2t + 1 = 3t f(t) = (2/3)t + (1/3)t = 1.

Xét f(t) = (2/3)t + (1/3)t (t R) ta có f'(t) < 0 (t R) => Hàm số f(t) nghịch biến trên R.

Khi đó f(t) = 1 f(t) = f(1) t = 1 x = 2t = 2

c. Giải phương trình logarit bằng cách đặt ẩn phụ

Cách làm:

Giải phương trình: f[logag(x)] = 0 (0 < a ≠ 1).

• Bước 1: Đặt t = logag(x) (*).

• Bước 2: Tìm điều kiện của t (nếu có).

• Bước 3: Đưa về giải phương trình f(t) = 0 đã biết cách giải.

•Bước 4: Thay vào (*) để tìm x.

Ví dụ: Giải phương trình log2x + (1)

Lời giải:

Đặt t = log2x với x > 0 và 10log2x + 6 0

Phương trình (1) đưa về dạng:

Giải phương trình tìm được t = 3 => x = 8

Vậy phương trình có nghiệm x = 8.

Đăng ký đặt mua bộ sách cán đích 9+ để nhận ưu đãi lên đến 50% của vuihoc bạn nhé!

2.3 Dạng bài về đường thẳng

a. Chứng minh hai đường thẳng song song trong không gian

Cách làm: Sử dụng 1 trong 4 cách sau:

  • Chứng minh hai đường thẳng đồng phẳng rồi chứng minh chúng song song trong hình học phẳng.
  • Chứng minh 2 đường thẳng đó cùng song song với đường thẳng thứ 3.
  • Áp dụng định lý giao tuyến song song
  • 2 mặt phẳng phân biệt chứa 2 đường thẳng song song thì giao tuyến của chúng cũng song song hoặc trùng với 1 trong 2 đường thẳng đó.

Ví dụ: Cho tứ diện ABCD, gọi I và J lần lượt và trọng tâm các ABC và ABD. Chứng minh IJ // CD.

Lời giải:

Gọi M và N lần lượt là trung điểm của BC và BD

=>MN là đường trung bình của BCD nên MN // CD (1)

Do I và J lần lượt là trọng tâm các ABC và ABD

=> IJ // MN (2)

Từ (1) và (2) => IJ // CD.

b. Chứng minh đường thẳng song song với mặt phẳng

Cách làm: Lựa chọn một trong các cách sau để chứng minh

  • Chứng minh đường thẳng a // (P) ta chứng minh a // b trong đó b (P)
  • Sử dụng tính chất đường trung bình của tam giác, hình thang hoặc định lý talet đảo để chứng minh.
  • Áp đụng định lý: Nếu 3 mặt phẳng cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.

Ví dụ: Cho tứ diện ABCD có G là trọng tâm của ABD; Q thuộc cạnh AB sao cho AQ = 2QB; gọi P là trung điểm của AB. Hãy chứng minh GQ // mp(BCD)

Lời giải:

Gọi M là trung điểm của BD. Vì G là trọng tâm ABD

Có điểm Q thuộc AB thỏa mãn AQ = 2QB

Từ (1) và (2)

=> GQ // BD ( ĐL talet đảo)

Mặt khác có BD nằm trong mp(BCD) => GQ // mp (BCD)

c. Chứng minh hai mặt phẳng song song

Cách 1: Chứng minh mp () có 2 đường thẳng a và b cắt nhau cùng song song với mp ()

Cách 2: Chứng minh 2 mặt phẳng đó cùng song song với mặt phẳng thứ ba.

Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M; N: I theo thứ tự là trung điểm của SA; SD và AB. Hãy chứng minh (MON) // (SBC)?

Ta có MN là đường trung bình của SAD => MN // AD (1). Ta có OP là đường trung bình của ABC => OP // BC // AD (2)

Từ (1) và (2) => MN // OP // AD => 4 điểm M, N, O, P đồng phẳng.

Ta có:

=> (MNOP) // (SBC) hay (MON) // (SBC)

Trên đây là những kiến thức trọng tâm ôn thi giữa kì 2 môn toán 11 mà vuihoc đã tổng hợp dựa trên các bài học trong chương trình toán 11. Để làm tốt bài thi giữu kì, các em cần ghi nhớ và nắm chắc lý thuyết. Chúc các em hoàn thành tốt bài thi giữa kì 1 môn toán và đừng quên truy cập trang web vuihoc.vn để học thêm nhiều kiến thức hữu ích khác nhé!

>> Mời bạn tham khảo thêm:

  • Đề thi giữa kì 2 môn Toán 11
  • Ôn thi giữa kì 2 môn Lý 11
  • Ôn thi giữa kì 2 môn Hóa 11
  • Ôn thi giữa kì 2 môn Tiếng Anh 11
  • Ôn thi giữa kì 2 môn Ngữ Văn 11
Previous Post

Lý thuyết Trung điểm của đoạn thẳng lớp 6 (hay, chi tiết)

Next Post

4 cách giải phương trình logarit nhanh gọn chính xác

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 (hay, chi tiết)

by Tranducdoan
05/02/2026
0
0

Bài viết Lý thuyết Phương trình chứa dấu giá trị tuyệt đối lớp 8 hay, chi tiết giúp bạn nắm...

Các dạng bài tập toán thực tế môn Toán 8

by Tranducdoan
05/02/2026
0
0

Tài liệu gồm 215 trang, tuyển tập các dạng bài tập toán thực tế môn Toán 8 chương trình mới....

4 cách giải phương trình logarit nhanh gọn chính xác

by Tranducdoan
05/02/2026
0
0

Trước khi đi vào chi tiết nội dung, các em cùng VUIHOC nhận định chung về phương trình logarit và...

Lý thuyết Trung điểm của đoạn thẳng lớp 6 (hay, chi tiết)

by Tranducdoan
05/02/2026
0
0

Bài viết Lý thuyết Trung điểm của đoạn thẳng lớp 6 hay, chi tiết giúp bạn nắm vững kiến thức...

Load More
Next Post

4 cách giải phương trình logarit nhanh gọn chính xác

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Thông báo tuyển sinh trình độ thạc sĩ theo định hướng nghiên cứu đợt 1 năm 2022 – Khóa 32 (2022-2024)

05/02/2026

Chuyền nước hay truyền nước đúng chính tả?

05/02/2026

Một chiếc cổng hình parabol khi đưa vào hệ trục toạ độ Oxy có dạng y = ax^2

05/02/2026
Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp 789bet https://pihu.in.net/ Ca Khia TV trực tiếp XoilacTV go 88
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.