Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Văn học

Cách Viết Phương Trình Mặt Phẳng Trung Trực Của Đoạn Thẳng

by Tranducdoan
11/02/2026
in Văn học
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. 1. Mặt phẳng trung trực là gì?
    1. 1.1. Định nghĩa
    2. 1.2. Tính chất:
  2. 2. Cách viết phương trình mặt phẳng trung trực của đoạn thẳng
  3. 3. Một số bài tập viết phương trình mặt phẳng trung trực của đoạn thẳng

1. Mặt phẳng trung trực là gì?

1.1. Định nghĩa

Trong không gian cho điểm I và đoạn thẳng AB nhận I là trung điểm. Mặt phẳng (P) đi qua I và vuông góc với đường thẳng AB thì mặt phẳng (P) được gọi là mặt phẳng trung trực của đoạn thẳng AB.

1.2. Tính chất:

Mọi điểm nằm trên mặt phẳng trung trực luôn cách đều hai đầu đoạn thẳng.

Như vậy, các em có thể thấy khái niệm mặt phẳng trung trực cũng tương tự như khái niệm về đường trung trực của đoạn thẳng trong mặt phẳng.

2. Cách viết phương trình mặt phẳng trung trực của đoạn thẳng

Bên trên, chúng ta đã hiểu thế nào là mặt phẳng trung trực của đoạn thẳng rồi, và từ đó để viết phương trình mặt phẳng trung trực trong không gian thì chúng ta sẽ dựa vào chính khái niệm này.

Từ định nghĩa nêu trên có thể thấy rằng nếu (P) là mặt phẳng trung trực của đoạn AB thì véc-tơ AB chính là véc-tơ pháp tuyến của mặt phẳng (P) còn trung điểm I của đoạn AB là điểm thuộc mặt phẳng (P).

Khi đó, phương trình mặt phẳng trung trực (P) đoạn thẳng AB được viết theo 3 bước sau:

– Bước 1: Tìm tọa độ trung điểm I của đoạn thẳng AB (cách tìm tọa độ trung điểm là lấy trung bình cộng tọa độ điểm A và điểm B tương ứng).

– Bước 2: Tìm véc-tơ AB (cách tính véc-tơ AB là lấy tọa độ điểm cuối B trừ đi tọa độ điểm đầu A tương ứng). Ta sẽ có véc-tơ pháp tuyến của mặt phẳng (P).

– Bước 3: Viết phương trình mặt phẳng (P) đi qua điểm I nhận véc-tơ AB là véc-tơ pháp tuyến.

Ví dụ 1: Cho điểm A (2;1;1) và B (2;-1;-1) trong không gian Oxyz. Viết phương trình mặt phẳng trung trực (P) của đoạn AB.

Giải

Gọi I (x,y,z) là trung điểm của AB, khi đó:

  • x =$frac{x_{A}+x_{B}}{2}$ => x = 2

  • y =$frac{y_{A}+y_{B}}{2}$ => y = 0

  • z =$frac{z_{A}+z_{B}}{2}$ => z = 0

Ta có :

$overrightarrow{AB}=(0;-2;-2)$

Vậy mặt phẳng này trung trực (P) đi qua điểm I (2;0;0) có véc-tơ pháp tuyến $vec{n}= overrightarrow{AB} = (0;-2;-2)$

Nên (P) có phương trình là:

$0(x-2) – 2(y-0)-2(z-0) = 0 $

$Leftrightarrow y+z = 0$

Ví dụ 2: Trong không gian Oxyz, cho điểm A (0;2;-5) và B (2;-4;7). Vậy mặt phẳng trung trực của đoạn thẳng AB có phương trình:

A. $2x -6y + 12z – 10 = 0$

B. $-2x + 6y -12z +10 = 0$

C. $x – 3y +6z -10 = 0$

D. $-x + 3y – 6z +10 = 0$

Giải

Trung điểm I của đoạn thẳng AB có tọa độ là (1;-1;1)

Véc-tơ AB có tọa độ là (2;-6;12) là một véc-tơ pháp tuyến của mặt phẳng trung trực của đoạn AB.

Mặt phẳng có phương trình dưới đây:

$2(x-1) – 6(y+1) +12(z-1) = 0$

$Leftrightarrow 2x – 6y + 12z -20 = 0$

$Leftrightarrow x – 3y + 6z -10 =0$

Chọn đáp án C

* Cách nhẩm nhanh phương trình mặt phẳng trung trực

Khi làm các bài toán trắc nghiệm về viết phương trình mặt phẳng trung trực ta có thể giản lược các bước nêu trên để cho ra kết quả ngay. Ta xét lại ví dụ sau:

“Viết phương trình tổng quát (P) biết trong không gian Oxyz, cho điểm A(1;2;3) và điểm B(3;6;1). Biết rằng đoạn thẳng AB nhận mặt phẳng (P) là mặt phẳng trung trực.”

– Đầu tiên ta sẽ nhẩm ra véc-tơ AB (2;4;-2). Khi đó ta sẽ viết được một phần của phương trình là:

2x + 4y – 2z + … = 0

– Sau đó ta sẽ nhẩm tọa độ trung điểm AB là I(2;4;2) ta thay luôn vào phần phương trình vừa tìm được ở bên trên. Ta được: 2.2 + 4.4 – 2.2 = 16. Lấy phần phương trình trên trừ đi kết quả vừa tìm được:

$2x+4y-2z-16=0$

Dưới đây đây là cách nhẩm nhanh của phương trình mặt phẳng trung trực của đoạn thẳng. Các em học sinh hãy luyện tập để có thể làm bài một cách nhanh chóng và thành thạo hơn nhé.

Đăng ký ngay để được thầy cô tóm tắt kiến thức hình học không gian và xây dựng lộ trình học phù hợp nhất phục vụ quá trình ôn thi tốt nghiệp THPT môn Toán

doan thang ab

3. Một số bài tập viết phương trình mặt phẳng trung trực của đoạn thẳng

Bài 1: Cho điểm A(1;2;3) và điểm B(3;6;1) trong không gian Oxyz, ta biết mặt phẳng (P) là mặt phẳng trung trực của đoạn thẳng AB. Viết phương trình tổng quát (P).

Giải:

Đoạn thẳng AB có tọa độ (2;4;2) có trung điểm I.

Vecto AB có tọa độ (2;4;−2) là một vectơ pháp tuyến của mặt phẳng (P).

phương trình mặt phẳng (P) là:

$2(x−2)+4(y−4)−2(z−2)=0$

⇔ $2x + 4y − 2z − 16 = 0$

⇔ $x + 2y − z − 8 = 0$

Bài 2: Trong không gian Oxyz, điểm A(-1,2,3) và điểm B(1,6,-1). Phương trình mặt phẳng trung trực AB có dạng như thế nào?

Giải:

Trung điểm I đoạn thẳng AB có tọa độ (0;4;1).

Mặt phẳng trung trực đoạn AB vecto AB có tọa độ (2;4;−4) là một vecto pháp tuyến. Mặt phẳng ta cần tìm có phương trình như sau:

$2(x−0) + 4(y−4) − 4(z−1) = 0$

⇔ $x + 2y − 2z − 6 = 0$

⇔ $−x − 2y + 2z + 6 = 0$

Bài 3: Lập phương trình mặt phẳng có chứa trục Oy, điểm Q(1;4;-3)

(Q) có chứa trục Oy và Q (1;4;-3)

+ (Q) chứa Oy ⇒ vecto chỉ phương là $bar{j} = (0;1;0)$

+ (Q) chứa O (0;0;0) và Q (1;4;-3) ⇒ nhận $bar{OQ} = (1;4;-3)$ là 1 vecto chỉ phương

⇒ (Q) nhận $[bar{j}, bar{OQ}] = (-3;0;-1)$ là 1 vecto pháp tuyến

⇒ (Q): -3(x – 0) – 1.(z – 0) = 0

hay (Q): 3x + z = 0.

Nhận ngay bộ tài liệu tổng hợp kiến thức và phương pháp giải mọi dạng bài tập Toán THPT độc quyền của VUIHOC

doan thang ab 1

Bài 4: Đoạn AB có phương trình mặt phẳng trung trực với điểm A(2;3;7), B(4;1;3) là?

Giải:

Gọi trung điểm đoạn thẳng AB là điểm M.

Vậy ta có tọa độ của M là:

Đoạn thẳng AB có (P) là mặt phẳng trung trực nên mặt phẳng (P) đi qua M và nhận vecto $bar{AB}$ là vecto pháp tuyến. Vậy phương trình của mặt phẳng (P):

Bài 5: Phương trình tổng quát mp (MNP) với M(1;1;1), N(4;3;2), P(5;2;1) là?

Giải:

⇒ Một vectơ pháp tuyến của mặt phẳng (MNP) là $bar{n} (1;-4;5)$

Mặt phẳng (MNP) với M(1;1;1), N(4;3;2), P(5;2;1) có phương trình tổng quát là :

$(x-1) – 4(y-1) + 5(z-1) = 0$

Hoặc $x – 4y + 5z – 2 = 0$

Tham khảo thêm:

⭐Bộ Sách Thần Tốc Luyện Đề Toán – Lý – Hóa THPT Có Giải Chi Tiết

Trên đây là toàn bộ kiến thức và tổng hợp đầy đủ các dạng bài tập về phương trình mặt phẳng trung trực. Hy vọng sau bài viết các em học sinh có thể áp dụng công thức toán hình 12 để giải các bài tập một cách dễ dàng. Để học tập và ôn tập kiến thức lớp 12 ôn thi THPT Quốc gia, hãy truy cập Vuihoc.vn và đăng ký khóa học ngay hôm nay nhé!

>> Xem thêm:

  • Cách xác định góc giữa đường thẳng và mặt phẳng trong không gian
  • Phương Trình Đường Thẳng Trong Không Gian: Lý Thuyết Và Bài Tập
Previous Post

30+ bài thơ năm chữ về mái trường (siêu hay)

Next Post

Hịch tướng sĩ (Ngô Tất Tố dịch)

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Giải thích ý nghĩa câu thành ngữ ‘Nhất tự vi sư, bán tự vi sư’ nói lên điều gì?

by Tranducdoan
12/02/2026
0
0

Chúng ta học rộng hiểu cao, đạt được chức vị cao trong xã hội không phải do bẩm sinh mà...

Công thức tính vận tốc, quãng đường, thời gian chính xác

by Tranducdoan
12/02/2026
0
0

Vận tốc là đại lượng quen thuộc trong cuộc sống, trong những môn thể thao như đua xe, chạy điền...

Tỉnh Nghệ An

by Tranducdoan
12/02/2026
0
0

Biển Đông nằm trên tuyến đường giao thông biển huyết mạch nối liền Thái Bình Dương - Ấn Độ Dương,...

Cao su được trồng nhiều nhất ở những vùng nào nước ta?

by Tranducdoan
12/02/2026
0
0

Cao su được trồng nhiều nhất ở vùng nào? Cây cao su được đưa vào trồng tại Việt Nam vào...

Load More
Next Post

Hịch tướng sĩ (Ngô Tất Tố dịch)

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet sumclub
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.