Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Lý thuyết Tổng hợp chương Dãy số – Cấp số cộng và cấp số nhân lớp 11 (hay, chi tiết)

by Tranducdoan
12/02/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Lý thuyết Tổng hợp chương Dãy số – Cấp số cộng và cấp số nhân lớp 11 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Tổng hợp chương Dãy số – Cấp số cộng và cấp số nhân.

Mục Lục Bài Viết

  1. Lý thuyết Tổng hợp chương Dãy số – Cấp số cộng và cấp số nhân
    1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC
    2. DÃY SỐ
    3. CẤP SỐ CỘNG
    4. CẤP SỐ NHÂN

Lý thuyết Tổng hợp chương Dãy số – Cấp số cộng và cấp số nhân

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

PHƯƠNG PHÁP QUY NẠP TOÁN HỌC

Để chứng minh những mệnh đề liên quan đến số tự nhiên n ∈ N* là đúng với mọi n mà không thể thử trực tiếp thì có thể làm như sau:

+ Bước 1. Kiểm tra rằng mệnh đề đúng với n = 1.

+ Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k ≥ 1 (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.

Đó là phương pháp quy nạp toán học, hay còn gọi tắt là phương pháp quy nạp.

Chú ý: Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là một số tự nhiên) thì:

+ Bước 1. ta phải kiểm tra mệnh đề đúng với n = p.

+ Bước 2. giả thiết mệnh đề đúng với số tự nhiên bất kì n = k ≥ p và phải chứng minh rằng nó cũng đúng với n = k + 1.

DÃY SỐ

I. ĐỊNH NGHĨA

1. Định nghĩa dãy số

Mỗi hàm số u xác định trên tập các số nguyên dương N* được gọi là một dãy số vô hạn (gọi tắt là dãy số). Kí hiệu:

u: N* → R

n → u(n).

Người ta thường viết dãy số dưới dạng khai triển

u1, u2, u3,…, un,…,

trong đó un = u(n) hoặc viết tắt là (un), và gọi u1 là số hạng đầu, un là số hạng thứ n và là số hạng tổng quát của dãy số.

2. Định nghĩa dãy số hữu hạn

Mỗi hàm số u xác định trên tập M = {1,2,3,…,m} với m ∈ N* được gọi là một dãy số hữu hạn.

Dạng khai triển của nó là u1, u2, u3, …, un, trong đó u1 là số hạng đầu, un là số hạng cuối.

II. CÁCH CHO MỘT DÃY SỐ

1. Dãy số cho bằng công thức của số hạng tổng quát

2. Dãy số cho bằng phương pháp mô tả

3. Dãy số cho bằng phương pháp truy hồi

Cách cho một dãy số bằng phương pháp truy hồi, tức là:

a) Cho số hạng đầu (hay vài số hạng đầu).

b) Cho hệ thức truy hồi, tức là hệ thức biểu thị số hạng thứ n qua số hạng (hay vài số hạng) đứng trước nó.

III. DÃY SỐ TĂNG, DÃY SỐ GIẢM VÀ DÃY SỐ BỊ CHẶN

1. Dãy số tăng, dãy số giảm

Định nghĩa 1

Dãy số (un) được gọi là dãy số tăng nếu ta có un+1 > un với mọi n ∈ N*.

Dãy số (un) được gọi là dãy số giảm nếu ta có un+1 < un với mọi n ∈ N*.

Chú ý: Không phải mọi dãy số đều tăng hoặc giảm. Chẳng hạn, dãy số (un) với un = (-3)n tức là dãy -3; 9; -27; 81,… không tăng cũng không giảm.

2. Dãy số bị chặn

Định nghĩa 2

Dãy số (un) được gọi là bị chặn trên nếu tồn tại một số M sao cho

un ≤ M, ∀ n ∈ N*

Dãy số (un) được gọi là bị chặn dưới nếu tồn tại một số m sao cho

un ≥ m, ∀ n ∈ N*

Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho

m ≤ un ≤ M, ∀ n ∈ N*

CẤP SỐ CỘNG

I. ĐỊNH NGHĨA

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.

Số d được gọi là công sai của cấp số cộng.

Nếu (un) là cấp số cộng với công sai d, ta có công thức truy hồi

un+1 = un + d với n ∈ N*

Đặc biệt khi d = 0 thì cấp số cộng là một dãy số không đỗi (tất cả các số hạng đều bằng nhau).

II. SỐ HẠNG TỔNG QUÁT

Định lí 1

Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un được xác định bởi công thức:

un = u1 + (n – 1 )d với n ≥ 2

III. TÍNH CHẤT CÁC SỐ HẠNG CỦA CẤP SỐ CỘNG

Định lí 2

Trong một cấp số cộng, mỗi số hạng (trừ số hạng đầu và cuối) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

IV. TỔNG n SỐ HẠNG ĐẦU CỦA MỘT CẤP SỐ CỘNG

Định lí 3

Cho cấp số cộng (un). Đặt Sn = u1 + u2 + u3 +…+un. Khi đó

Chú ý: Vì un = u1 + (n – 1)d nên công thức trên có thể viết lại là

CẤP SỐ NHÂN

I. ĐỊNH NGHĨA

Cấp số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q.

Số q được gọi là công bội của cấp số nhân.

Nếu (un) là cấp số nhân với công bội q, ta có công thức truy hồi:

un+1 = unq với n ∈ N*

Đặc biệt:

+ Khi q = 0, cấp số nhân có dạng u1, 0, 0,…, 0,…

+ Khi q = 1, cấp số nhân có dạng u1, u1, u1,…, u1,…

+ Khi u1 = 0 thì với mọi q, cấp số nhân có dạng 0, 0, 0,…, 0…

II. SỐ HẠNG TỔNG QUÁT

Định lí 1

Nếu cấp số nhân có số hạng đầu u1 và công bội q thì số hạng tổng quát un được xác định bởi công thức

un = u1.qn – 1 với n ≥ 2

III. TÍNH CHẤT CÁC SỐ HẠNG CỦA CẤP SỐ NHÂN

Định lí 2

Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và cuối) đều là tích của hai số hạng đứng kề với nó, nghĩa là

uk2 = uk – 1.uk + 1 với k ≥ 2

IV. TỔNG n SỐ HẠNG ĐẦU TIÊN CỦA MỘT CẤP SỐ NHÂN

Định lí 3

Cho cấp số nhân (un) với công bội q ≠ 1. Đặt Sn = u1 + u2 + … + un. Khi đó

Chú ý: Nếu q = 1 thì cấp số nhân là u1, u1, u1,…, u1,… khi đó Sn = nu1.

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Lý thuyết Giới hạn của dãy số
  • Lý thuyết Giới hạn của hàm số
  • Lý thuyết Hàm số liên tục
  • Lý thuyết Tổng hợp chương Giới hạn
  • Lý thuyết Định nghĩa và ý nghĩa của đạo hàm
Previous Post

Balance the following chemical equations:

Next Post

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Căn thức bậc hai và hằng đẳng thức toán 9 trọn bộ và bài tập ví dụ

by Tranducdoan
13/02/2026
0
0

Ngày hôm nay chúng ta hãy cùng tìm hiểu về căn thức bậc hai và hằng đẳng thức bậc hai....

Hàm số lượng giác lớp 11 (Lý thuyết Toán 11 Kết nối tri thức)

by Tranducdoan
13/02/2026
0
0

Với tóm tắt lý thuyết Toán 11 Bài 3: Hàm số lượng giác sách Kết nối tri thức hay nhất,...

Học thêm Toán lớp 9

by Tranducdoan
13/02/2026
0
0

Trang chủ » Gia sư lớp học nhóm » Học thêm Toán lớp 9 👁 3468 lượt xem Học thêm...

Toán 11 Kết nối tri thức Bài tập cuối chương 8

by Tranducdoan
13/02/2026
0
0

Với giải bài tập Toán 11 Bài tập cuối chương 8 sách Kết nối tri thức hay nhất, chi tiết...

Load More
Next Post

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet sumclub
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.