Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Tin tức

Công Thức Tính Bán Kính Mặt Cầu Ngoại Tiếp Tứ Diện Và Bài Tập

by Tranducdoan
17/02/2026
in Tin tức
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. 1. Cách xác định tọa độ tâm và bán kính mặt cầu ngoại tiếp tứ diện
  2. 2. Công thức tính nhanh bán kính mặt cầu ngoại tiếp tứ diện
  3. 3. Công thức tính bán kính mặt cầu ngoại tiếp hình chóp
    1. 3.1. Dạng 1: Hình chóp đều
    2. 3.2. Dạng 2: Hình chóp có cạnh bên vuông góc với mặt đáy
    3. 3.3. Dạng 3: Hình chóp có mặt bên vuông góc với đáy
  4. 4. Một số bài tập tính bán kính mặt cầu ngoại tiếp tứ diện

1. Cách xác định tọa độ tâm và bán kính mặt cầu ngoại tiếp tứ diện

Mặt cầu ngoại tiếp tứ diện là mặt cầu đi qua 4 đỉnh hay 4 điểm A, B, C, D. Để tìm và xác định được tọa độ tâm và bán kính mặt cầu ngoại tiếp tứ diện, chúng ta làm theo 3 cách sau:

Cách 1: Sử dụng tính chất IA = IB = IC = ID. Gọi I là tâm mặt cầu => tọa độ tâm và bán kính mặt cầu.

Cách 2: Ví dụ phương trình mặt cầu là $x^{2}+y^{2}+z^{2}+2ax+2by+2cz+d=0$.

Vì mặt cầu cùng đi qua 4 điểm A, B, C, D nên tọa độ sẽ thỏa mãn phương trình mặt cầu. Ta sẽ có hệ 4 phương trình ẩn a, b, c, d. Giải hệ này ta sẽ nhận được phương trình mặt cầu => tọa độ tâm và bán kính mặt cầu.

Cách 3: Ta viết phương trình mặt phẳng trung trực của AB, CD, BC. Giao của ba mặt phẳng này là tâm mặt cầu ngoại tiếp tứ diện ABCD hay tâm mặt cầu đi qua 4 điểm A, B, C, D.

2. Công thức tính nhanh bán kính mặt cầu ngoại tiếp tứ diện

Phương pháp chung để tính nhanh công thức mặt cầu ngoại tiếp tứ diện là:

  • Chúng ta xác định tâm của đáy để từ đó dựng được đường thẳng d vuông góc với mặt đáy.

  • Dựng mặt phẳng trung trực (P) của một cạnh bên bất kì.

  • Tâm mặt cầu là giao điểm của d và (P).

3. Công thức tính bán kính mặt cầu ngoại tiếp hình chóp

Bài toán tính bán kính mặt cầu ngoại tiếp hình chóp là dạng bài tập rất phổ biến. Ta có các dạng công thức dưới đây:

3.1. Dạng 1: Hình chóp đều

Ta có a là độ dài cạnh bên của hình chóp, h là chiều cao của hình chóp.

R = $frac{a^{2}}{2h}$

Ví dụ: Tính bán kính mặt cầu ngoại tiếp khối chóp đã cho biết ta có hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 3a.

Giải:

Gọi O chính là tâm hình vuông ABCD, vậy ta có SO$perp $(ABCD).

ao = $frac{AC}{2}=frac{asqrt{2}}{2}$

Ta xét tam giác SAO vuông tại O.

SO = $sqrt{SA^{2}-AO^{2}}=frac{asqrt{34}}{2}$

Ta lại có R = $frac{SA^{2}}{2SO}=frac{9asqrt{34}}{34}$

3.2. Dạng 2: Hình chóp có cạnh bên vuông góc với mặt đáy

Ta gọi r, h là bán kính và chiều cao đường tròn ngoại tiếp đa giác đáy. Có:

R=$sqrt{(frac{h}{2})^{2}+r^{2}}$

Ví dụ: Hãy tính bán kính R mặt cầu ngoại tiếp tứ diện OABC khi cho tứ diện OABC, các cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = 2a, OC = 2a.

Giải:

Ta có tam giác OBC vuông tại O nên h = OA = a

Ta có BC =$sqrt{OB^{2}+OC^{2}}=2sqrt{2}a$

r = $asqrt{2}$

Theo công thức ta áp dụng:

R = $sqrt{(frac{a}{2})^{2}+(asqrt{2})^{2}}=frac{3a}{2}$

3.3. Dạng 3: Hình chóp có mặt bên vuông góc với đáy

Bán kính đường tròn ngoại tiếp mặt bên và mặt đáy được gọi lần lượt là $R_{b},R_{d}$. GT là độ dài giao tuyến mặt bên và đáy.

R=$sqrt{R_{b}^{2}+R_{d}^{2}-frac{GT^{2}}{4}}$

Ví dụ: Hãy tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD, biết hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh a. Tam giác SAB đều, nằm trong mặt phẳng vuông góc với đáy.

Giải

Giao tuyến của (SAB) và (ABCD) là AB.

Bán kính đường tròn ngoại tiếp đáy $R_{d}=AO=frac{asqrt{2}}{2}$

Bán kính R đường tròn ngoại tiếp mặt bên là R = SG =$frac{asqrt{3}}{3}$

Ta có công thức:

$R=sqrt{R_{b}^{2}+R_{d}^{2}-frac{GT^{2}}{4}}=frac{asqrt{21}}{6}$

Đăng ký ngay để được các thầy cô tư vấn và xây dựng lộ trình ôn thi THPT môn Toán sớm ngay từ bây giờ

mat cau ngoai tiep tu dien

4. Một số bài tập tính bán kính mặt cầu ngoại tiếp tứ diện

Bài 1: Hãy tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABCD biết rằng S.ABCD có đáy là hình chữ nhật. BC = 4a, AB = 3a, SA = 12a và SA vuông góc với đáy.

Giải:

Ta có $R_{d}=frac{AC}{2}=frac{sqrt{AB^{2}+BC^{2}}}{2}=frac{5a}{2}$

=> R=$sqrt{R_{d}^{2}+(frac{h}{2})^{2}}=sqrt{(frac{5a}{2})^{2}+(frac{12a}{2})^{2}}=frac{13a}{2}$

Bài 2: Cho hình chóp S.ABC có các cạnh SA, SB, SC bằng nhau và đều bằng a. Hãy tính diện tích S mặt cầu ngoại tiếp hình chóp biết rằng $widehat{ASC}=widehat{ASB}=90^{circ}$

Giải:

S = $4pi R^{2}=frac{7pi a^{2}}{3}$

Bài 3: Tính bán kính R mặt cầu ngoại tiếp hình chóp khi cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, cạnh bên SA = 2a và vuông góc với đáy (ABC). AB = a và $widehat{BAC}=120^{circ}$

Giải:

Áp dụng định lý cos ta có:

BC =$sqrt{AB^{2}+AC^{2}-2AB.AC.coswidehat{BAC}}=asqrt{3}$

Lại có r = $frac{AB.BC.AC}{4.S_{ABC}}=frac{AB.BC.AC}{2.AB.AC.sinwidehat{BAC}}=a$

R=$sqrt{(frac{h}{2})^{2}+r^{2}}=sqrt{(frac{2a}{a})^{2}+a^{2}}=asqrt{2}$

Bài 4: Cho hình chóp S.ABCD, đáy ABCD là một hình vuông. Tính bán kính mặt cầu ngoại tiếp hình chóp biết SA vuông góc với mặt phẳng (ABCD) và SC = 2a.

Giải:

Ta có:

R = $frac{AC}{2}$, h = SA

R = $sqrt{(frac{AC}{2})^{2}+(frac{SA}{2})^{2}}=frac{1}{2}S_{c}=a$

Bài 5: Hình chóp S.ABC có đáy là tam giác vuông ABC, vuông tại C. Tính bán kính mặt cầu ngoại tiếp hình chóp biết mặt phẳng (SAB) vuông góc với đáy, SA = SB = a và $widehat{ASB}=120^{circ}$

Giải:

AB = $sqrt{SA^{2}+SB^{2}-2SA.SB.coswidehat{ASB}}=asqrt{3}$

=> GT=AB=$asqrt{3}$

$R_{d}=frac{AB}{2}=frac{asqrt{3}}{3}$

$R_{b}=frac{SA.SB.AB}{4.S_{ABC}}=frac{SA.SB.AB}{2.SA.SB.sin120^{circ}}=a$

Để ôn tập nhiều hơn về các lý thuyết mặt cầu ngoại tiếp tứ diện đồng thời áp dụng để thực hành các bài tập luyện tập, cùng VUIHOC theo dõi bài giảng dưới đây của thầy Trường Giang nhé. Có rất nhiều mẹo giải nhanh bằng CASIO mà các em học sinh không nên bỏ qua đâu đó!

Trên đây là toàn bộ lý thuyết và cách giải chi tiết nhất của bài toán mặt cầu ngoại tiếp tứ diện. Để có thể đạt được kết quả cao thì hãy kết hợp luyện tập thêm nhiều dạng bài khác nữa. Các bạn có thể truy cập nền tảng Vuihoc.vn và đăng ký tài khoản để luyện đề ôn thi THPT Quốc gia!

Tham khảo thêm:

⭐Bộ Sách Thần Tốc Luyện Đề Toán – Lý – Hóa THPT Có Giải Chi Tiết

>> Xem thêm: Toán 12: Lý thuyết phương trình mặt cầu và các dạng bài tập

Previous Post

Toán lớp 6 – Chuyên đề tìm tỉ số của hai số

Next Post

Tổng hợp lý thuyết: Tổng hợp lực và phân tích lực – VUIHOC Vật lý 10

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Hướng dẫn nhanh cách truy cập Zalo Web trên smartphone

by Tranducdoan
17/02/2026
0
0

Đăng nhập Zalo Web trên điện thoại - giải pháp tiện lợi cho việc quản lý đa tài khoản Zalo...

Các biển báo giao thông đường bộ 2020, mẹo nhớ ý nghĩa từng loại

by Tranducdoan
17/02/2026
0
0

Hầu hết người tham gia giao thông hiện nay chưa nắm được hết ý nghĩa của các loại biển báo...

THỤY KHUÊ đã sai lầm ra sao khi nhận định về VŨ TRỌNG PHỤNG VÀ NAM CAO?

by Tranducdoan
17/02/2026
0
0

Nhà nghiên cứu Lại Nguyên Ân đánh giá khả năng của nhà phê bình Thụy Khuê “thường chỉ dùng lối...

Cường độ trường hấp dẫn tại bề mặt trên đường xích đạo của Mộc Tinh có độ lớn 25 m/s^2

by Tranducdoan
17/02/2026
0
0

Giải Chuyên đề Vật Lí 11 Bài 3: Cường độ trường hấp dẫn - Chân trời sáng tạo Bài tập...

Load More
Next Post

Tổng hợp lý thuyết: Tổng hợp lực và phân tích lực - VUIHOC Vật lý 10

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet sumclub game bài đổi thưởng topclub 789p
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.