• Latest
  • Trending
  • All

Lý Thuyết Phương Trình Đường Elip Lớp 10 Chi Tiết Nhất

16/12/2025

Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác lớp 7 (Lý thuyết Toán 7 Kết nối tri thức)

16/12/2025

Văn Khấn Khi Đến Đền Cờn

16/12/2025

Nổi bật với các mẫu Giới thiệu bản thân tốt nhất cho mọi mục đích

16/12/2025

Giáo sư

16/12/2025

Hỗn số lớp 5 (lý thuyết chi tiết)

16/12/2025

Top 15 tóm tắt Lại đọc Chữ người tử tù của Nguyễn Tuân (hay, ngắn nhất) – Cánh diều

16/12/2025
Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Tin tức

Lý Thuyết Phương Trình Đường Elip Lớp 10 Chi Tiết Nhất

by Tranducdoan
16/12/2025
in Tin tức
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. 1. Định nghĩa phương trình đường elip lớp 10
  2. 2. Phương trình chính tắc của đường elip
  3. 3. Thành phần và hình dạng của elip
  4. 4. Các dạng bài tập về phương trình đường elip

1. Định nghĩa phương trình đường elip lớp 10

Trong mặt phẳng, cho hai điểm cố định F1 và F2. Elip là tập hợp các điểm M sao cho tổng $F_{1}M+F_{2}M=2a$ không đổi.

Trong đó các điểm $F_{1},F_{2}$ gọi là tiêu điểm của elip.

Khoảng cách $F_{1}F_{2}=2c$ gọi là tiêu cự của elip.

2. Phương trình chính tắc của đường elip

Cho elip có tiêu điểm $F_{1},F_{2}$ chọn hệ trục tọa độ Oxy sao cho $F_{1}(-c;0)$ và $F_{2}(c;0)$. Khi đó người ta chứng minh được:

$Mleft ( x;y right )epsilon$ elip $Rightarrow frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1$ (1)

Trong đó: $b^{2}=a^{2}-c^{2}$

Phương trình (1) được gọi là phương trình chính tắc của đường elip.

Ví dụ: Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip ( E) có độ dài trục lớn bằng 12 và độ dài trục bé bằng 6. Hãy viết phương trình chính tắc của elip (E)?

Giải:

Phương trình chính tắc của elip có dạng $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1$ (a,b > 0).

Ta có độ dài trục lớn bằng 12 nên 2a = 12 => a = 6

Ta có độ bé bằng 6 nên 2b = 6 => b = 3

Vậy phương trình của Elip là: $frac{x^{2}}{36}+frac{y^{2}}{9}=1$

Đăng ký ngay để nhận bộ tài liệu nắm trọn kiến thức và phương pháp giải mọi dạng bài tập Toán thi THPT Quốc gia

tinh chat elip

3. Thành phần và hình dạng của elip

Với elip (E) có phương trình (1):

Nếu điểm M(x;y) thuộc (E) thì các điểm $M_{1}$(-x;y), $M_{2}$=(x;-y) cũng thuộc (E).

Vậy (E) có:

+ Các trục đối xứng: Ox, Oy

+ Tâm đối xứng là gốc O

các thành phần của elip - kiến thức về phương trình đường elip lớp 10

Thay y = 0 vào (1) ta có $x=pm a$, suy ra (E) cắt Ox tại hai điểm $A_{1}$=(-a;0) và $A_{2}=(a;0)$.

Tương tự thay x=0 vào (1) ta được y=b, vậy (E) cắt Oy tại hai điểm $B_{1}=(0;-a),B_{2}=(a;0)$.

Các điểm $A_{1},A_{2},B_{1},B_{2}$ gọi là các đỉnh của elip.

Trong đó đoạn thẳng $A_{1},A_{2}$ là trục lớn, đoạn thẳng $B_{1},B_{2}$ là trục nhỏ của elip.

Ví dụ: Xác định độ dài các trục, toạ độ các tiêu điểm, toạ độ các đỉnh và vẽ elip (E) có phương trình: $frac{x^{2}}{25}+frac{y^{2}}{9}=1$

Giải:

Vì phương trình đường elip có dạng $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1$

$left{begin{matrix}a^{2}=25 b^{2}=9end{matrix}right.$ $Leftrightarrow left{begin{matrix}a=5 b=3end{matrix}right.$

$c=sqrt{a^{2}-b^{2}}=4$

Vậy (E) có:

– Trục lớn : $A_{1}A_{2}$ = 2a =10

– Trục nhỏ : $B_{1}B_{2}$ = 2b = 6

– Hai tiêu điểm: $F_{1}$(- 4;0), $F_{2}$(4;0)

– Bốn đỉnh: $A_{1}$(- 5;0), $A_{2}$(5;0), $B_{1}$(0;- 3), $B_{2}$(0;3).

4. Các dạng bài tập về phương trình đường elip

Câu 1: Cho Elip (E): $frac{x^{2}}{16}+frac{y^{2}}{12}=1$ và điểm M nằm trên (E). Giả sử điểm M có hoành độ bằng 1 thì các khoảng cách từ M tới 2 tiêu điểm của (E) bằng bao nhiêu?

Giải:

Ta có $a^{2}=16,b^{2}=12$

nên $c^{2}=a^{2}-b^{2}=4$ $Rightarrow a=4;c=2$ và hai tiêu điểm $F_{1}$(-2; 0); $F_{2}$(2;0)

Điểm M thuộc (E) và $x_{M}=1Rightarrow y_{M}pm frac{3sqrt{5}}{2}$

Tâm sai của elip $e=frac{c}{a}Rightarrow e=frac{2}{4}=frac{1}{2}$ $Rightarrow MF_{1}=a+ex_{M}=4+0.5=4.5$ $MF_{2}=a-ex_{M}=4-0.5=3.5$

Câu 2: Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip (E) có tâm sai bằng $frac{sqrt{3}}{3}$ và độ dài đường chéo hình chữ nhật cơ sở bằng $2sqrt{5}$.

Giải:

Gọi phương trình chính tắc của elip (E) có dạng: $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}$ với a>b>0

Tâm sai $e=frac{c}{a}=frac{sqrt{3}}{3}Leftrightarrow c^{2}=frac{a^{2}}{sqrt{3}}$.

Độ dài đường chéo hình chữ nhật $sqrt{left ( 2a right )^{2}+left ( 2b right )^{2}}=2sqrt{5}Leftrightarrow a^{2}+b^{2}=5Leftrightarrow b^{2}=5-a^{2}$

Khi đó: $a^{2}=b^{2}+c^{2}Leftrightarrow a^{2}=5-a^{2}+frac{a^{2}}{3}Leftrightarrow a^{2}=3Rightarrow b^{2}=2$

Vậy phương trình chính tắc của elip (E) cần lập là: $frac{x^{2}}{3}+frac{y^{2}}{2}=1$

Đăng ký ngay để được các thầy cô ôn tập và xây dựng lộ trình ôn nắm chắc kiến thức 10 – 11

tinh chat elip 2

Câu 3: Trong mặt phẳng tọa độ Oxy. Viết phương trình chính tắc của elip (E) biết rằng elip (E) có hai tiêu điểm $F_{1},F_{2}$, với $F_{1}(-sqrt{3};0)$ và có một điểm M thuộc (E) để tam giác F1MF2 vuông tại M và có S=1.

Giải:

Gọi phương trình chính tắc của elip (E) có dạng: $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}$ với a>b>0

Với $F_{1}(-sqrt{3};0)$, suy ra $c=sqrt{3}$ => $a^{2}-b^{2}-c^{2}=3$ hay $a^{2}=b^{2}+3$ (1)

Gọi $Mleft ( x_{0};y_{0} right )$ $Rightarrowleft{begin{matrix} vec{MF_{1}}=left ( -sqrt{3}-x_{0};-y_{0}right ) vec{MF_{2}}=left ( sqrt{3} -x_{0};-y_{0}right )end{matrix}right.$

Khi đó: $widehat{F_{1}MF_{2}}=90^{circ}$ $Leftrightarrow overline{MF_{1}}.overline{MF_{2}}=0$ $Leftrightarrow x_{0}^{2}-3+y_{0}^{2}=0$ $Leftrightarrow x_{0}^{2}+y_{0}^{2}=3$

Ta có: $S_{F_{1}MF_{2}}=frac{1}{2}d(M,Ox).F_{1}F_{2}=frac{1}{2}left | y_{0} right |.2sqrt{3}=sqrt{3}left | y_{0} right |=1$ $Leftrightarrow y_{0}^{2}=frac{1}{3}$ $Rightarrow x_{0}^{2}=frac{8}{3}$

Mặt khác $M(x_{0};y_{0})epsilon (E)$ $Leftrightarrow frac{x_{0}^{2}}{a^{2}}+frac{y_{0}^{2}}{b^{2}}=1$ $Leftrightarrow frac{8}{3a^{2}}+frac{1}{3b^{2}}=1$ (2)

Thay (1) vào (2) ta được: $frac{8}{3(b^{2}+3)}+frac{1}{3b^{2}}=1Leftrightarrow 3b^{4}=3Leftrightarrow b=1$ (do b>0) $Rightarrow a^{2}=4$

Vậy phương trình chính tắc của elip (E) cần lập là: $frac{x^{2}}{4}+y^{2}=1$

Bài 4: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): $x^{2}+y^{2}=8$. Biết (E) có độ dài trục lớn bằng 8 và (E) cắt (C) tại bốn điểm tạo thành bốn đỉnh của một hình vuông. Hãy viết phương trình chính tắc elip (E).

Giải:

giải phương trình đường elip

Ta có phương trình chính tắc của elip (E) có dạng: $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1$

– (E) có độ dài trục lớn bằng 8 nên suy ra 2a = 8 => a = 4.

– (E) cắt (C) tại 4 điểm phân biệt tạo thành 4 đỉnh của một hình vuông => 4 đỉnh nằm trên hai đường phân giác thuộc góc phần tư thứ nhất và thứ hai.

Ta giả sử A là một giao điểm của (E) và (C) thuộc đường phân giác Δ: y = x.

– Gọi $A(t;t)epsilon Delta $ (t > 0). Ta có: $Aepsilon(C)Rightarrow t^{2}+t^{2}=8Leftrightarrow t=2$ (vì t > 0) => A(2;2)

– Mà $Aepsilon(E)Rightarrow frac{2^{2}}{4^{2}}+frac{2^{2}}{b^{2}}=1Rightarrow b^{2}=frac{16}{3}$

Vậy phương trình chính tắc của elip (E) là: $frac{x^{2}}{16}+frac{y^{2}}{frac{16}{3}}=1$

Câu 5: Trong mặt phẳng tọa độ Oxy, cho elip (E) có hai tiêu điểm $F_{1}(-sqrt{3};0),F_{2}(sqrt{3};0)$ và đi qua điểm $A(sqrt{3};frac{1}{2})$. Hãy lập phương trình chính tắc của (E) và với mọi điểm M thuộc (E), hãy tính giá trị biểu thức: $P=MF_{1}^{2}+MF_{2}^{2}-3OM^{2}-MF_{1}MF_{2}$.

Giải:

– Gọi phương trình chính tắc của elip (E) có dạng: $frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1$ với a>b>0

(E) có hai tiêu điểm $F_{1}(-sqrt{3};0),F_{2}left ( sqrt{3};0right )$ suy ra $c=sqrt{3}$

– Khi đó a² – b² = c² = 3 ⇔ a² = b² +3 => (E): $frac{x^{2}}{b^{2}+3}+frac{y^{2}}{b^{2}}=1$

– Với $Aleft ( sqrt{3};frac{1}{2}right )epsilon (E)$ ⇔ $frac{3}{b^{2}+3}+frac{1}{4b^{2}}=1$ ⇔ $4b^{2}-b^{2}-3=0Leftrightarrow left ( 4b^{2}+3right )left ( b^{2}-1 right )=0$ $Leftrightarrow b^{2}=1Rightarrow a^{2}=4$

Vậy phương trình chính tắc của (E) là: $frac{x^{2}}{4}+y^{2}=1$

$M(x_{0};y_{0})epsilon (E)Rightarrowleft{begin{matrix} MF_{1}=a+frac{c}{a}x_{0};MF_{2}=a-frac{c}{a}x_{0}OM^{2}=x_{0}^{2}+y_{0}^{2};frac{x_{0}^{2}}{4}+y_{0}^{2}=1end{matrix}right.$

Khi đó:

P = $left ( a+frac{c}{a}x_{0} right )^{2}+left ( a-frac{c}{a}x_{0} right )^{2}-3(x_{0}^{2}+y_{0}^{2})-(a+frac{c}{a}x_{0})(a-frac{c}{a}x_{0})$

= $x^{2}+frac{3c^{2}}{a^{2}}x_{0}^{2}-3(x_{0}^{2}+y_{0}^{2})$

= $4+frac{9}{4}x_{0}^{2}-3(x_{0}^{2}+y_{0}^{2})$

= $4-3(frac{x_{0}^{2}}{4}+y_{0}^{2})$

= 4-3=1

Vậy P = 1

Thông qua những kiến thức trong bài viết, hi vọng các em đã có thể vận dụng lý thuyết vào làm bài tập về phương trình đường elip. Để có thể học thêm nhiều phần bài giảng thú vị và chi tiết khác, các em có thể truy cập ngay Vuihoc.vn để đăng ký tài khoản để bắt đầu quá trình học tập của mình nhé!

Previous Post

BÀN VỀ VIỆC PHÂN BIỆT TRẠNG NGỮ VỚI MỘT SỐ THÀNH PHẦN KHÁC TRONG CÂU TIẾNG VIỆT

Next Post

Một số sự kiện trong ngày 19 tháng 7:

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác lớp 7 (Lý thuyết Toán 7 Kết nối tri thức)

by Tranducdoan
16/12/2025
0
0

Với tóm tắt lý thuyết Toán 7 Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân...

Nổi bật với các mẫu Giới thiệu bản thân tốt nhất cho mọi mục đích

by Tranducdoan
16/12/2025
0
0

Bạn đã bao giờ gặp khó khăn khi viết về bản thân mình chưa? 😅 Bạn không đơn độc! Tóm...

Top 15 tóm tắt Lại đọc Chữ người tử tù của Nguyễn Tuân (hay, ngắn nhất) – Cánh diều

by Tranducdoan
16/12/2025
0
0

Với tóm tắt Lại đọc Chữ người tử tù của Nguyễn Tuân Ngữ văn lớp 11 Cánh diều hay, ngắn...

Literature-studying Blog

by Tranducdoan
16/12/2025
0
0

<*Mình biết đề này khá khó viết và khó học, nhưng nếu cố gắng nuốt được đề này là yên...

Load More
Next Post

Một số sự kiện trong ngày 19 tháng 7:

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

04/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác lớp 7 (Lý thuyết Toán 7 Kết nối tri thức)

16/12/2025

Văn Khấn Khi Đến Đền Cờn

16/12/2025

Nổi bật với các mẫu Giới thiệu bản thân tốt nhất cho mọi mục đích

16/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.