Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home chính tả

Lý thuyết Phân tích đa thức thành nhân tử lớp 8 (hay, chi tiết)

by Tranducdoan
30/12/2025
in chính tả
0
Đánh giá bài viết

Bài viết Lý thuyết Phân tích đa thức thành nhân tử lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phân tích đa thức thành nhân tử.

Mục Lục Bài Viết

  1. Lý thuyết Phân tích đa thức thành nhân tử lớp 8 (hay, chi tiết)
    1. A. Lý thuyết
    2. I. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG
    3. II. PHÂN THÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
    4. III. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM HẠNG TỬ
    5. IV. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHỐI HỢP NHIỀU PHƯƠNG PHÁP
    6. B. Bài tập tự luyện

Lý thuyết Phân tích đa thức thành nhân tử lớp 8 (hay, chi tiết)

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

Bài giảng: Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung – Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

A. Lý thuyết

I. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT NHÂN TỬ CHUNG

1. Khái niệm về phương pháp đặt nhân tử chung

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Ứng dụng: Việc phân tích đa thức thành nhân tử giúp ta có thể thu gọc biểu thức, tính nhanh và giải phương trình dễ dàng.

2. Phương pháp đặt nhân tử chung

+ Khi tất cả các số hạng của đa thức có một thừa số chung, ta đặt thừa số chung đó ra ngoài dấu ngoặc () để làm nhân tử chung.

+ Các số hạng bên trong dấu () có được bằng cách lấy số hạng của đa thức chia cho nhân tử chung.

Chú ý: Nhiều khi để làm xuất hiện nhân tử chung ta cần đổi dấu các hạng tử.

( lưu ý tính chất: A = -(-A)).

3. Ví dụ áp dụng

Ví dụ: Phân tích đa thức sau thành nhân tử

a, 4×2 – 6x

b, 9x4y3 + 3x2y4

Lời giải:

a) Ta có : 4×2 – 6x = 2x.2x – 3.2x = 2x( 2x – 3 ).

b) Ta có: 9x4y3 + 3x2y4 = 3x2y3.3×2 + 3x2y3y = 3x2y3(3×2 + 1)

II. PHÂN THÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC

1. Phương pháp dùng hằng đẳng thức

+ Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử.

+ Cần chú ý đến việc vận dụng linh hoạt các hằng đẳng thức để phù hợp với các nhân tử.

2. Ví dụ áp dụng

Ví dụ: Phân tích đa thức sau thành nhân tử

a, 9×2 – 1

b, x2 + 6x + 9.

Lời giải:

a) Ta có: 9×2 – 1 = ( 3x )2 – 12 = ( 3x – 1 )( 3x + 1 )

(áp dụng hằng đẳng thức A2 – B2 = ( A – B )( A + B ) )

b) Ta có: x2 + 6x + 9 = x2 + 2.x.3 + 32 = ( x + 3 )2.

(áp dụng hằng đẳng thức ( A + B )2 = A2 + 2AB + B2 )

III. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM HẠNG TỬ

1. Phương pháp nhóm hạng tử

+ Ta vận dụng phương pháp nhóm hạng tử khi không thể phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung hay bằng phương pháp dùng hằng đẳng thức.

+ Ta nhận xét để tìm cách nhóm hạng tử một cách thích hợp (có thể giao hoán và kết hợp các hạng tử để nhóm) sao cho sau khi nhóm, từng nhóm đa thức có thế phân tích được thành nhân tử bằng phương pháp đặt nhân tử chung, bằng phương pháp dùng hằng đẳng thức. Khi đó đa thức mới phải xuất hiện nhân tử chung.

+ Ta áp dụng phương pháp đặt thành nhân tử chung để phân tích đa thức đã cho thành nhân tử.

2. Chú ý

+ Với một đa thức, có thể có nhiều cách nhóm các hạng tử một cách thích hợp.

+ Khi phân tích đa thức thành nhân tử ta phải phân tích đến cuối cùng (không còn phân tích được nữa).

+ Dù phân tích bằng cách nào thì kết quả cũng là duy nhất.

+ Khi nhóm các hạng tử, phải chú ý đến dấu của đa thức.

3. Ví dụ áp dụng

Ví dụ: Phân tích các đa thức sau thành nhân tử.

a, x2 – 2xy + xy2 – 2y3.

b, x2 + 4x – y2 + 4.

Lời giải:

a) Ta có x2 – 2xy + xy2 – 2y3 = ( x2 – 2xy ) + ( xy2 – 2y3 ) = x( x – 2y ) + y2( x – 2y )

= ( x + y2 )( x – 2y )

b) Ta có x2 + 4x – y2 + 4 = ( x2 + 4x + 4 ) – y2 = ( x + 2 )2 – y2 = ( x + 2 – y )( x + y + 2 )

IV. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ BẰNG PHỐI HỢP NHIỀU PHƯƠNG PHÁP

1. Phương pháp thực hiện

Ta tìm hướng giải bằng cách đọc kỹ đề bài và rút ra nhận xét để vận dụng các phương pháp đã biết:

+ Đặt nhân tử chung

+ Dùng hằng đẳng thức

+ Nhóm nhiều hạng tử và phối hợp chúng

⇒ Để phân tích đa thức thành nhân tử.

2. Chú ý

Nếu các hạng tử của đa thức có nhân tử chung thì ta nên đặt nhân tử chung ra ngoài dấu ngoặc để đa thức trong ngoặc đơn giản hơn rồi mới tiếp tục phân tích đến kết quả cuối cùng.

3. Ví dụ áp dụng

Ví dụ: Phân tích đa thức thành nhân tử

x2 + 4x – 2xy – 4y + y2.

2xy – x2 – y2 + 16.

Lời giải:

a) Ta có x2 + 4x – 2xy – 4y + y2 = ( x2 – 2xy + y2 ) + ( 4x – 4y ) = ( x – y )2 + 4( x – y )

= ( x – y )( x – y + 4 ).

b) Ta có: 2xy – x2 – y2 + 16 = 16 – ( x2 – 2xy + y2 ) = 16 – ( x – y )2

= ( 4 – x + y )( 4 + x – y ).

B. Bài tập tự luyện

Bài 1: Phân tích các đa thức sau thành nhân tử

a, ( ab – 1 )2 + ( a + b )2

b, x3 + 2×2 + 2x + 1

c, x2 – 2x – 4y2 – 4y

Lời giải:

a) Ta có ( ab – 1 )2 + ( a + b )2 = a2b2 – 2ab + 1 + a2 + 2ab + b2

= a2b2 + a2 + b2 + 1 = ( a2b2 + a2 ) + ( b2 + 1 )

= a2( b2 + 1 ) + ( b2 + 1 ) = ( a2 + 1 )( b2 + 1 )

b) Ta có x3 + 2×2 + 2x + 1 = ( x3 + 1 ) + ( 2×2 + 2x )

= ( x + 1 )( x2 – x + 1 ) + 2x( x + 1 ) = ( x + 1 )( x2 + x + 1 )

c) Ta có x2 – 2x – 4y2 – 4y = ( x2 – 4y2 ) – ( 2x + 4y )

= ( x – 2y )( x + 2y ) – 2( x + 2y )

= ( x + 2y )( x – 2y – 2 ).

Bài 2: Tính giá trị của biểu thức sau A = x6 – 2×4 + x3 + x2 – x, biết x3 – x = 6.

Lời giải:

Ta có: A = x6 – 2×4 + x3 + x2 – x = ( x6 – 2×4 + x2 ) + ( x3 – x )

= ( x3 – x )2 + ( x3 – x )

Với x3 – x = 6 = ( x3 – x )2 + ( x3 – x ), ta có A = 62 + 6 = 36 + 6 = 42.

Vậy A = 42.

Bài 3: Tìm x biết

Lời giải:

Bài 4. Phân tích các đa thức sau thành nhân tử:

a) A = x4 – 11×3 + 26×2 – 22x + 48;

b) B = x5 + 3×4 + x3 − 11×2 − 30x – 20.

Lời giải:

a) A = x4 – 8×3 – 3×3 + 24×2 + 2×2 – 16x – 6x + 48

= (x – 8)(x3 – 3×2 + 2x – 6)

= (x – 8)(x – 3)(x2 + 2).

b) B = x5 + 3×4 + x3 − 11×2 − 30x – 20

= x5 – 5×3 + 3×4 – 15×2 + 6×3 – 30x + 4×2 – 20

= (x2 − 5)(x3 + 3×2 + 6x + 4)

= (x2 − 5)(x3 + 2×2 + 4x + x2 + 2x + 4)

= (x2 − 5)(x2 + 2x + 4) (x + 1).

Bài 5. Phân tích các đa thức sau thành nhân tử.

a) A = x4 + 5×3 + 7×2 + 5x + 6

b) B = x3 − 11×2 + 10x

Lời giải:

a) A = x4 + 5×3 + 7×2 + 5x + 6

= x4 + 3×3 + 2×3 + 6×2 + x2 + 3x + 2x + 6

= (x + 3)(x3 + 2×2 + x + 2)

= (x + 3)(x3 + x + 2×2 + 2)

= (x + 3)(x2 + 1)(x + 2).

b) B = x3 − 11×2 + 10x

= x(x2 − 11x+ 10)

= x(x2 – x – 10x + 10)

= x(x – 1)(x – 10).

Bài 6. Tìm x, biết:

a) x3 − 5×2 − 9x + 10 = -35

b) x5 − 4×3 + 5×2 – 20 = 0

Lời giải:

a) x3 − 5×2 − 9x + 10 = -35

x3 − 5×2 − 9x + 45 = 0

x(x2 – 9) – 5(x2 – 9) = 0

(x – 5)(x2 – 9) = 0

(x – 5)(x – 3)(x + 3) = 0

x – 5 = 0 hoặc x – 3 = 0 hoặc x + 3 = 0

x = 5 hoặc x = 3 hoặc x = -3

Vậy x ∈ {-3; 3; 5}.

b) x5 − 4×3 + 5×2 – 20 = 0

x3(x2 – 4) + 5(x2 – 4) = 0

(x2 – 4)(x3 + 5) = 0

(x + 2)(x – 2)(x3 + 5) = 0

x + 2 = 0 hoặc x – 2 = 0 hoặc x3 + 5 = 0

x = 2 hoặc x = – 2 hoặc x = −53.

Vậy x∈−2;  −53 ;   2 .

Bài 7. Cho P = x2 + 11x + 24. Tìm x để P chia hết cho 4.

Lời giải:

P = x2 + 11x + 24

= x2 + 3x + 8x + 24

= (x + 3)(x + 8)

Nhận thấy, (x + 3) và (x + 8) không cùng lúc chẵn.

Nên P ⁝ 4 khi và chỉ khi (x + 3) ⁝ 4 hoặc (x + 8) ⁝ 4.

• Trường hợp 1: x + 3 ⁝ 4 nên x = 4k + 1 (k ∈ ℤ).

• Trường hợp 2: x + 8 ⁝ 4 nên x = 4h (h ∈ ℤ).

Bài 8. Tìm x, biết: x4 + 10×3 + 35×2 + 50x + 24 = 0.

Lời giải:

x4 + 10×3 + 35×2 + 50x + 24 = 0

x4 + x3 + 9×3 + 9×2 + 26×2 + 26x + 24x + 24 = 0

(x + 1)(x3 + 9×2 + 26x + 24) = 0

(x + 1)( x3 + 2×2 + 7×2 + 14x + 12x + 24) = 0

(x + 1)(x + 2)(x2 + 7x + 12) = 0

(x + 1)(x + 2)(x2 + 3x + 4x + 12) = 0

(x + 1)(x + 2)(x + 3)(x + 4) = 0

Vậy x ∈ {-1; -2; -3; -4}.

Bài 9. Tìm nhân tử chung của các biểu thức:

a) A = 5×3+16×2+8x+16+3x​;

b) B = 5×4+21×2+19+3×2.

Bài 10. Cho biểu thức P = x4 + x3 + 2x + 2. Với giá trị nào của x thì P ⁝ 10?

Bài 11. Cho biểu thức P = x4 + 8×3 + 32×2 + 256x. Với giá trị nào của x thì P ⁝ 16?

Bài 12. Tìm x, biết: x2+2x+5+7x−2=0.

Bài 13. Tìm nhân tử chung của biểu thức: P = 2×4 − 11×3 − 7×2 + 51x + 45.

Bài giảng: Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung – Cô Vương Thị Hạnh (Giáo viên VietJack)

Bài giảng: Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức – Cô Vương Thị Hạnh (Giáo viên VietJack)

Bài giảng: Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử – Cô Vương Thị Hạnh (Giáo viên VietJack)

Bài giảng: Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp – Cô Vương Thị Hạnh (Giáo viên VietJack)

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

  • Bài tập Phân tích đa thức thành nhân tử
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
  • Lý thuyết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

  • Giải bài tập Toán 8
  • Giải sách bài tập Toán 8
  • Top 75 Đề thi Toán 8 có đáp án
Previous Post

Hải ngọc's Weblog

Next Post

Luật số 18/2012/QH13 của Quốc hội: LUẬT BIỂN VIỆT NAM

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Tin tức & sự kiện

by Tranducdoan
30/12/2025
0
0

Lãn công là gì? Lãn công là hành vi đấu tranh, tự phát của tập thể người lao động tại...

Fe + CuCl2 → Cu + FeCl2 | Fe ra FeCl2 | Fe ra Cu | CuCl2 ra Cu | CuCl2 ra FeCl2

by Tranducdoan
30/12/2025
0
0

Phản ứng hóa học: Fe + CuCl2 hay Fe ra FeCl2 hoặc Fe ra Cu hoặc CuCl2 ra Cu hoặc...

Tiền bạc, của cải trong tục ngữ của người Việt

by Tranducdoan
30/12/2025
0
0

Tục ngữ là túi khôn của dân gian. Có rất nhiều câu tục ngữ nói về thứ quyền lực xã...

Mông lung hay mung lung mong lung là đúng chính tả?

by Tranducdoan
30/12/2025
0
0

Mông lung hay mung lung hay mong lung khiến nhiều người phân vân vì không biết đâu mới là cách...

Load More
Next Post

Luật số 18/2012/QH13 của Quốc hội: LUẬT BIỂN VIỆT NAM

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Tin tức & sự kiện

30/12/2025

Fe + CuCl2 → Cu + FeCl2 | Fe ra FeCl2 | Fe ra Cu | CuCl2 ra Cu | CuCl2 ra FeCl2

30/12/2025

Cách đọc tên nguyên tố hóa học theo SGK mới khiến giáo viên, học sinh bối rối!

30/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.