Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Bất đẳng thức Cô si

by Tranducdoan
30/12/2025
in Toán tổng hợp
0
Đánh giá bài viết

Trong chương trình Toán lớp 9, bất đẳng thức là một mảng kiến thức vừa quan trọng vừa “khó nhằn” đối với nhiều học sinh, đặc biệt trong các đề thi vào lớp 10 THPT. Trong số đó, bất đẳng thức Cô si được xem là công cụ nền tảng, xuất hiện xuyên suốt từ bài tập cơ bản đến các câu hỏi vận dụng – vận dụng cao. Việc nắm vững bản chất và cách áp dụng bất đẳng thức này sẽ giúp học sinh giải nhanh, gọn và chính xác rất nhiều dạng toán thường gặp trong đề thi.

Bản quyền thuộc về VnDoc.Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

Mục Lục Bài Viết

  1. I. Bất đẳng thức Cauchy (Cô si)
  2. II. Bài tập bất đẳng thức Co-si lớp 9
  3. III. Bài tập bất đẳng thức lớp 9

I. Bất đẳng thức Cauchy (Cô si)

1. Phát biểu bất đẳng thức Côsi

+ Nghĩa là:

2. Chứng minh bất đẳng thức Cauchy (Cô si) với 2 số thực a và b không âm

+ Với a = 0, b = 0 thì bất đẳng thức luôn luôn đúng. Với a, b > 0, ta chứng minh:

(frac{{a + b}}{2} ge sqrt {ab})

(begin{array}{l} Leftrightarrow a + b ge 2sqrt {ab} Leftrightarrow a – 2sqrt {ab} + b ge 0 Leftrightarrow {left( {sqrt a – sqrt b } right)^2} ge 0 end{array})

Suy ra bất đẳng thức luôn đúng với mọi a, b không âm

3. Hệ quả của bất đẳng thức Cauchy (Cô si)

II. Bài tập bất đẳng thức Co-si lớp 9

Bài 1: a) Tìm giá trị nhỏ nhất của biểu thức (A = x + frac{7}{x}) với x > 0.

b) Cho (a geq 3) . Tìm GTNN của biểu thức (P = a + frac{1}{a}) .

c) Cho (a geq 2) . Tìm GTNN của biểu thức (P = a^{2} + frac{1}{a}) .

d) Cho (a geq 2) . Tìm GTNN của biểu thức (P = frac{1}{a^{2}} + a) .

Lời giải:

a) Áp dụng bất đẳng thức Cô si cho hai số x > 0 và ta có:

(x + frac{7}{x} ge 2sqrt {x.frac{7}{x}} = 2sqrt 7)

Dấu “=” xảy ra khi và chỉ khi (x = frac{7}{x} Leftrightarrow {x^2} = 7 Leftrightarrow x = sqrt 7)(do x > 0)

Vậy min(A = 2sqrt 7 Leftrightarrow x = sqrt 7).

b) Phân tích

Sai lầm: Nếu vội vàng, ta dẫn đến lời giải sau:

Sử dụng đẳng thức AM-GM cho 2 số dương, ta được:

(P = a + frac{1}{a} geq 2sqrt{a.frac{1}{a}} = 2)

Đẳng thức xảy ra khi (a = frac{1}{a} Leftrightarrow a = 1 < 3)

Vậy không có a thỏa nãm nên lời giải trên là sai.

Từ đó việc dự đoán dấu =” xảy ra (tức chọn điểm rơi) là vô cùng quan trọng.

Lời giải đúng: Chọn điểm rơi tại (a = 3) .

Với (a = 3 Rightarrow a neq frac{1}{a}) nên để sử dụng bất đẳng thức AM-GM ta phải thêm hệ số (k > 0) như sau: (P = left( frac{1}{a} + ka right) + (a – ka))

Tìm k dựa trên dấu bằng xảy ra (Leftrightarrow left{ begin{matrix} frac{1}{a} = ka a = 3 end{matrix} right. Rightarrow 3k = frac{1}{3} Leftrightarrow k = frac{1}{9}) .

Với hướng phân tích như trên, ta có lời giải chi tiết:

(P = frac{1}{a} + frac{a}{9} + frac{8a}{9} geq 2sqrt{frac{1}{a}.frac{a}{9}} + frac{8.3}{9} = frac{10}{3})

(Rightarrow MinP = frac{10}{3} Leftrightarrow a = 3)

Ngoài cách phân tích trên, ta còn có nhiều hướng tư duy khác:

Hướng 2:

Ta có: (P = left( a + frac{9}{a} right) – frac{10}{3} geq 6 – frac{8}{3} = frac{10}{3})

(Rightarrow min P = frac{10}{3} Leftrightarrow a = 3)

Hướng 3:

(P – frac{10}{3} = a + frac{1}{a} – frac{10}{3} = frac{3a^{2} – 10a + 3}{3a})

(= frac{3(a – 3)^{2} + 8(a – 3)}{3a} geq 0 Rightarrow P geq frac{10}{3})

Đẳng thức xảy ra tại (a = 3)

c) Hướng 1: Ta dễ thấy điẻm rơi đạt tại (a = 2)

Khi đó: (P = a^{2} + frac{1}{a} = left( a^{2} + frac{8}{a} + frac{8}{a} right) – frac{15}{a} geq 3sqrt[3]{64} – frac{15}{2} = frac{9}{2})

(Rightarrow min P = frac{9}{2} Leftrightarrow a = 2)

Hướng 2:

Ta có:

(P = a^{2} + frac{1}{a} = left( frac{1}{2a} + frac{1}{2a} + frac{a^{2}}{16} right) + frac{15}{16}a^{2})

(geq 3sqrt[3]{frac{1}{64}} + frac{15}{16}.4 = frac{3}{4} + frac{15}{4} = frac{9}{2})

(Rightarrow min P = frac{9}{2} Leftrightarrow a = 2)

Hướng 3:

(P – frac{9}{2} = a^{2} + frac{1}{a} – frac{9}{2} = frac{2a^{3} – 9a + 2}{2a})

(= frac{(a – 2)left( 2a^{2} + 4a – 1 right)}{2a} geq 0(forall a geq 2) Rightarrow P geq frac{9}{2})

Đẳng thức xảy ra tại (a = 2)

Hướng 4:

(P = (a – 2)^{2} + left( 4a + frac{16}{a} right) – frac{15}{a} – 4 geq 0 + 2sqrt{64} – frac{15}{2} – 4 = frac{9}{2})

Đẳng thức xảy ra tại (a = 2)

d) Hướng 1: Ta dễ thấy điẻm rơi đạt tại (a = 2)

Ta có: (P = frac{1}{a^{2}} + frac{a}{8} + frac{a}{8} + frac{3a}{4} geq 3sqrt[3]{frac{1}{64}} + frac{3}{4}.2 = frac{9}{4}) (Rightarrow min P = frac{9}{4} Leftrightarrow a = 2)

Hướng 2:

Ta có: (P = left( frac{a}{2} + frac{a}{2} + frac{4}{a^{2}} right) – frac{3}{a^{2}} geq 3 – frac{3}{4} = frac{9}{4}) (Rightarrow MinP = frac{9}{4} Leftrightarrow a = 2)

Hướng 3:

Xét hiệu:

(P – frac{9}{4} = frac{1}{a^{2}} + a – frac{9}{4} = frac{4a^{3} – 9a^{2} + 4}{4a^{2}})

(= frac{(a – 2)left( 4a^{2} – a – 2 right)}{4a^{2}} geq 0 (forall a geq 2) Rightarrow P geq frac{9}{4}.)

Dấu bằng xảy ra tại (a = 2.)

Hướng 4:

Ta có: (P = left( frac{1}{a} – frac{1}{2} right)^{2} + left( frac{1}{a} + frac{a}{4} right) + frac{3a}{4} – frac{1}{4} geq 0 + frac{1}{2} + frac{3}{2} – frac{1}{4} = frac{9}{4}.)

Đẳng thức xảy ra khi (a = 2.)

Bài 2: Cho x > 0, y > 0 thỏa mãn điều kiện (frac{1}{x} + frac{1}{y} = frac{1}{2}). Tìm giá trị nhỏ nhất của biểu thức (A = sqrt x + sqrt y).

Lời giải:

Áp dụng bất đẳng thức Cô si cho hai số x > 0, y > 0 ta có:

(frac{1}{x} + frac{1}{y} ge 2sqrt {frac{1}{x}.frac{1}{y}})

(Leftrightarrow frac{1}{2} ge frac{2}{{sqrt {xy} }} Leftrightarrow sqrt {xy} ge 4)

Lại có, áp dụng bất đẳng thức Cô si cho hai số x > 0, y > 0 ta có:

(sqrt x + sqrt y ge 2sqrt {sqrt {xy} } = 2sqrt 4 = 4)

Dấu “=” xảy ra khi và chỉ khi (left{ begin{array}{l} x = y frac{1}{x} + frac{1}{y} = frac{1}{2} end{array} right. Leftrightarrow x = y = 4)

Vậy minA = 4 khi và chỉ khi x = y = 4

Bài 3: Chứng minh với ba số a, b, c không âm thỏa mãn a + b + c = 3 thì:

(frac{a}{{b + c}} + frac{b}{{c + a}} + frac{c}{{a + b}} ge frac{3}{2})

Nhận xét: Bài toán đạt được dấu bằng khi và chi khi a = b = c = 1. Ta sẽ sử dụng phương pháp làm trội làm giảm như sau:

Lời giải:

Áp dụng bất đẳng thức Cô si cho ba số a, b, c không âm có:

(frac{a}{{b + c}} + frac{{b + c}}{4} + frac{1}{{2a}} ge 3sqrt[3]{{frac{a}{{b + c}}.frac{{b + c}}{4}.frac{1}{{2a}}}} = 3sqrt[3]{{frac{1}{8}}} = frac{3}{2})

Tương tự ta có (frac{b}{{c + a}} + frac{{c + a}}{4} + frac{1}{{2b}} ge frac{3}{2}) và (frac{c}{{a + b}} + frac{{a + b}}{4} + frac{1}{{2c}} ge frac{3}{2})

Cộng vế với vế ta có:

(frac{a}{{b + c}} + frac{{b + c}}{4} + frac{1}{{2a}} + frac{b}{{c + a}} + frac{{c + a}}{4} + frac{1}{{2b}} + frac{c}{{a + b}} + frac{{a + b}}{4} + frac{1}{{2c}} ge 3.frac{3}{2} = frac{9}{2})

(Leftrightarrow frac{a}{{b + c}} + frac{b}{{c + a}} + frac{c}{{a + b}} + frac{{2left( {a + b + c} right)}}{4} + frac{{ab + bc + ca}}{{2abc}} ge frac{9}{2})

(Leftrightarrow frac{a}{{b + c}} + frac{b}{{c + a}} + frac{c}{{a + b}} + frac{{a + b + c}}{2} + frac{{a + b + c}}{2} ge frac{9}{2})

(Leftrightarrow frac{a}{{b + c}} + frac{b}{{c + a}} + frac{c}{{a + b}} ge frac{9}{2} – 3 = frac{3}{2})

Dấu “=” xảy ra khi và chỉ khi a = b = c = 1

Bài 4: Cho (x;y) là các số thực dương và thỏa mãn (x + y leq 1). Tìm GTNN của biểu thức: (P = left( frac{1}{x} + frac{1}{y} right)sqrt{1 + x^{2}y^{2}}.)

Hướng dẫn giải

Ta có: (1 geq x + y geq 2sqrt{xy} Leftrightarrow 0 < xy leq frac{1}{4}.)

Từ đó: (P = left( frac{1}{x} + frac{1}{y} right)sqrt{1 + x^{2}y^{2}} geq frac{2}{sqrt{xy}}.sqrt{1 + x^{2}y^{2}} = 2sqrt{frac{1 + x^{2}y^{2}}{xy}} = 2sqrt{frac{1}{xy} + xy})

Đặt: (t = xyleft( 0 < t leq frac{1}{4} right) Rightarrow P geq 2sqrt{t + frac{1}{t}} = 2sqrt{left( t + frac{1}{16t} right) + frac{15}{16t}} geq 2.frac{sqrt{17}}{2} = sqrt{17}.)

Vì: (left( t + frac{1}{16t} right) + frac{15}{16t} geq 2sqrt{frac{1}{16}} + frac{15}{4} = frac{17}{4} Rightarrow sqrt{left( t + frac{1}{16t} right) + frac{15}{16t}} geq frac{sqrt{17}}{2})

Đẳng thức xảy ra khi: (t = frac{1}{4} Rightarrow x = y = frac{1}{2}.)

Vậy (MinP = sqrt{17} Leftrightarrow x = y = frac{1}{2}.)

Bài 5: Cho (x;y) là các số thực dương và thỏa mãn (left( sqrt{x} + 1 right)left( sqrt{y} + 1 right) geq 4). Tìm GTNN của biểu thức:(P = frac{x^{2}}{y} + frac{y^{2}}{x}.)

Hướng dẫn giải

Ta dễ thấy điểm rơi đạt tại (x = y = 1)

Khi đó: (left{ begin{matrix} x + 1 geq 2sqrt{x} y + 1 geq 2sqrt{y} end{matrix} right. Rightarrow left{ begin{matrix} x + 3 geq 2left( sqrt{x} + 1 right) > 0 y + 3 geq 2left( sqrt{y} + 1 right) > 0 end{matrix} right.)

(Rightarrow (x + 3) + (y + 3) geq 2leftlbrack left( sqrt{x} + 1 right) + left( sqrt{y} + 1 right) rightrbrack geq 4sqrt{left( sqrt{x} + 1 right)left( sqrt{y} + 1 right)} geq 8 Leftrightarrow x + y geq 2)

Từ đó: (P = frac{x^{2}}{y} + frac{y^{2}}{x} geq frac{(x + y)^{2}}{x + y} = x + y geq 2). Vậy: (MinP = 2 Leftrightarrow x = y = 1).

Bài 6: Cho (a,b) là các số thực dương và thỏa mãn ((1 + a)(1 + b) = frac{9}{4}). Tìm GTNN của biểu thức: (P = sqrt{1 + a^{4}} + sqrt{1 + b^{4}}).

Hướng dẫn giải

Ta chứng minh rằng: (sqrt{1 + a^{4}} + sqrt{1 + b^{4}} geq sqrt{4 + left( a^{2} + b^{2} right)^{2}}, forall a,b)

Thật vậy, bình phương hai vế ta được:

(a^{4} + b^{4} + 2 + 2sqrt{left( 1 + a^{4} right)left( 1 + b^{4} right)} geq a^{4} + b^{4} + 2a^{2}b^{2} + 4)

(Leftrightarrow sqrt{left( 1 + a^{4} right)left( 1 + b^{4} right)} geq a^{2}b^{2} + 1 Leftrightarrow a^{4}b^{4} + a^{4} + b^{4} + 1 geq a^{4}b^{4} + 2a^{2}b^{2} + 1)

(Leftrightarrow left( a^{2} – b^{2} right)^{2} geq 0,forall a,b)

Mà (frac{9}{4} = (1 + a)(1 + b) = ab + a + b + 1 leq frac{a^{2} + b^{2}}{2} + a^{2} + frac{1}{4} + b^{2} + frac{1}{4} + 1 Leftrightarrow a^{2} + b^{2} geq frac{1}{2})

Từ đó (sqrt{1 + a^{4}} + sqrt{1 + b^{4}} geq sqrt{4 + left( a^{2} + b^{2} right)^{2}} geq sqrt{4 + frac{1}{4}} = frac{sqrt{17}}{2}).

Bài 7: Cho (a),(b),(c) là các số thực dương. Chứng minh rằng: (frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} geq a + b + c).

Hướng dẫn giải

Cách 1: Dùng bất đẳng thức Cauchy cho 3 số dương.

Ta có: (left{ begin{matrix} dfrac{a^{3}}{bc} + b + c geq 3a dfrac{b^{3}}{ca} + c + a geq 3b dfrac{c^{3}}{ab} + a + b geq 3c. end{matrix} right.). Cộng vế được: (frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} geq a + b + c.)

Đẳng thức xảy ra khi: (a = b = c.)

Cách 2: Dùng bất đẳng thức Cauchy cho 4 số dương.

Ta có: (frac{a^{3}}{bc} + frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} geq 4a.)

Tương tự ta có: (frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{b^{3}}{ca} + frac{c^{3}}{ab} geq 4b), (frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} + frac{c^{3}}{ab} geq 4c)

Cộng vế được: (4left( frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} right) geq 4(a + b + c) Leftrightarrow frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} geq a + b + c).

Cách 3:

Ta có: (frac{a^{3}}{bc} + frac{b^{3}}{ca} + frac{c^{3}}{ab} = frac{a^{4}}{abc} + frac{b^{4}}{abc} + frac{c^{4}}{abc} geq frac{left( a^{2} + b^{2} + c^{2} right)^{2}}{3abc}).

Ta cần chứng minh:

(frac{left( a^{2} + b^{2} + c^{2} right)^{2}}{3abc} geq a + b + c Leftrightarrow left( a^{2} + b^{2} + c^{2} right)^{2} geq 3abc(a + b + c)).

Thật vậy: (left( a^{2} + b^{2} + c^{2} right)^{2} geq (ab + bc + ca)^{2} geq 3abc(a + b + c)).

Cách 4: Dùng biến đổi tương đương.

Ta có: (frac{a^{4}}{abc} + frac{b^{4}}{abc} + frac{c^{4}}{abc} geq a + b + c Leftrightarrow a^{4} + b^{4} + c^{4} geq abc(a + b + c)).

(Leftrightarrow left( a^{2} – b^{2} right)^{2} + left( b^{2} – c^{2} right)^{2} + left( c^{2} – a^{2} right)^{2} + (ab – bc)^{2} + (bc – ca)^{2} + (ca – ab)^{2} geq 0).

Bài 8: Cho (a), (b), (c) là các số thực dương. Chứng minh rằng: (frac{a}{b} + frac{b}{c} + frac{c}{a} + frac{9sqrt[3]{abc}}{a + b + c} geq 6)

Ta dễ dàng chứng minh được: (frac{a}{b} + frac{b}{c} + frac{c}{a} geq frac{a + b + c}{sqrt[3]{abc}}).

Hướng dẫn giải

Thật vậy: (frac{a}{b} + frac{a}{b} + frac{b}{c} geq 3sqrt[3]{frac{a^{2}}{bc}} = frac{3a}{sqrt[3]{abc}}).

Tương tự: (frac{b}{c} + frac{b}{c} + frac{c}{a} geq frac{3b}{sqrt[3]{abc}}), (frac{c}{a} + frac{c}{a} + frac{a}{b} geq frac{3c}{sqrt[3]{abc}}).

Cộng vế ta được:

(3left( frac{a}{b} + frac{b}{c} + frac{c}{a} right) geq 3left( frac{a + b + c}{sqrt[3]{abc}} right) Leftrightarrow frac{a}{b} + frac{b}{c} + frac{c}{a} geq frac{a + b + c}{sqrt[3]{abc}}).

Từ đó: (frac{a}{b} + frac{b}{c} + frac{c}{a} + frac{9sqrt[3]{abc}}{a + b + c} geq frac{a + b + c}{sqrt[3]{abc}} + frac{9sqrt[3]{abc}}{a + b + c} geq 2sqrt{9} = 6).

Đẳng thức xảy ra khi: (a = b = c).

Vậy: (MinP = frac{sqrt{17}}{2} Leftrightarrow a = b = frac{1}{2}).

Bài 8: Giải phương trình:(frac{2^{x}}{4^{x} + 1} + frac{4^{x}}{2^{x} + 1} + frac{2^{x}}{2^{x} + 4^{x}} = frac{3}{2})

Hướng dẫn giải

Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt (left{ begin{matrix} a = 2^{x} b = 4^{x} end{matrix} right. ,a,b > 0)

Khi đó phương trình có dạng:(frac{a}{b + 1} + frac{b}{a + 1} + frac{1}{a + b} = frac{3}{2})

Vế trái của phương trình:

(VT = left( frac{a}{b + 1} + 1 right) + left( frac{b}{a + 1} + 1 right) + left( frac{1}{a + b} + 1 right) – 3)

(= left( frac{a + b + 1}{b + 1} right) + left( frac{a + b + 1}{a + 1} right) + left( frac{a + b + 1}{a + b} right) – 3)

(= (a + b + 1)left( frac{1}{b + 1} + frac{1}{a + 1} + frac{1}{a + b} right) – 3)

(= frac{1}{2}leftlbrack (b + 1) + (a + 1) + (a + b) rightrbrackleft( frac{1}{b + 1} + frac{1}{a + 1} + frac{1}{a + b} right) – 3)

(geq frac{1}{2}3 sqrt[3]{(a + 1)(b + 1)(a + b)}.frac{3}{sqrt[3]{(a + 1)(b + 1)(a + b)}} – 3 = frac{3}{2})

Vậy phương trình tương đương với:

(a + 1 = b + 1 = a + b Leftrightarrow a = b = 1 Leftrightarrow 2^{x} = 4^{x} = 1 Leftrightarrow x = 0).

Bài 9: Cho x, y, z > 0 và x + y + z = 1. Tìm giá trị lớn nhất của biểu thức (P = frac{x}{x + 1} + frac{y}{y + 1} + frac{z}{z + 1})?

Hướng dẫn giải

Ta có:

P = 3 – ((frac{1}{x + 1} + frac{1}{y + 1} + frac{1}{z + 1})) = 3 – Q.

Theo BĐT Côsi, nếu a, b, c > 0 thì

(a + b + c geq 3sqrt[3]{abc})

(Leftrightarrow frac{1}{a} + frac{1}{b} + frac{1}{c} geq 3sqrt[3]{frac{1}{abc}})

(Rightarrow (a + b + c)left( frac{1}{a} + frac{1}{b} + frac{1}{c} right) geq 9)

(Rightarrow frac{1}{a} + frac{1}{b} + frac{1}{c} geq frac{9}{a + b + c})

Suy ra Q = (frac{1}{x + 1} + frac{1}{y + 1} + frac{1}{z + 1} geq frac{9}{4})

(Rightarrow) – Q(leq – frac{9}{4}) nên P = 3 – Q (leq) 3-(frac{9}{4})=(frac{3}{4})

Vậy max P =(frac{3}{4}) .khi x = y = z = (frac{1}{3}).

Bài 10: Cho a, b, c > 0. Chứng minh rằng: (frac{1}{a^{2} + bc} + frac{1}{b^{2} + ac} + frac{1}{c^{2} + ab} leq frac{a + b + c}{2abc})

Giải: Áp dụng bất đẳng thức Côsi ta có:

(a^{2} + + bc geq 2asqrt{bc}) (Rightarrow frac{2}{a^{2} + + bc} leq frac{1}{asqrt{bc}} leq frac{1}{2}left( frac{1}{ab} + frac{1}{ac} right))

Tương tự:

(frac{2}{b^{2} + + ac} leq frac{1}{bsqrt{ac}} leq frac{1}{2}left( frac{1}{bc} + frac{1}{ab} right))

(Rightarrow frac{2}{c^{2} + + ab} leq frac{1}{csqrt{ab}} leq frac{1}{2}left( frac{1}{ac} + frac{1}{bc} right))

(Rightarrow frac{2}{a^{2} + bc} + frac{2}{b^{2} + + ac} + frac{2}{c^{2} + + ab} leq frac{a + b + c}{2abc})

Dấu “=” xảy ra khi a = b = c.

Bài 11: CMR trong tam giác ABC: (frac{a}{b + c – a} + frac{b}{c + a – b} + frac{c}{a + b – c} geq 3) (*)

Hướng dẫn giải

Theo bất đẳng thức Côsi :

(frac{a}{b + c – a} + frac{b}{c + a – b} + frac{c}{a + b – c}) (geq 3sqrt[3]{frac{abc}{(b + c – a)(c + a – b)(a + b – c)}}(1))

Cũng theo bất đẳng thức Côsi:

(sqrt{(b + c – a)(c + a – b)} leq frac{1}{2}(b + c – a + c + a – b) = c (2))

Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được

((b + c – a)(c + a – b)(a + b – c) leq abc)

(rightarrow frac{abc}{(b + c – a)(c + a – b)(a + b – c)} geq 1 (3))

Từ (1), (3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều.

Bài 12: Cho (left{ begin{matrix} 0 < a leq b leq c 0 < x,y,z end{matrix} right.). Chứng minh rằng:

((ax + by + cz)left( frac{x}{a} + frac{y}{b} + frac{z}{c} right) leq frac{(a + c)^{2}}{4ac}(x + y + z)^{2})

Giải:

Đặt (f(x) = x^{2} – (a + c)x + ac = 0) có 2 nghiệm a, c

Mà: (a leq b leq c Rightarrow f(b) leq 0 Leftrightarrow b^{2} – (a + c)b + ac leq 0)

(Leftrightarrow b + frac{ac}{b} leq a + c) (Leftrightarrow yb + acfrac{y}{b} leq (a + c)y)

(Rightarrow left( xa + acfrac{x}{a} right) + (yb + acfrac{y}{b}) + (zc + acfrac{z}{c})) (leq (a + c)x + (a + c)y + (a + c)z)

(Rightarrow xa + yb + zc + acleft( frac{x}{a} + frac{y}{b} + frac{z}{c} right) leq (a + c)(x + y + z))

Theo bất đẳng thức Cauchy ta có:

(Rightarrow 2sqrt{(xa + yb + zc)acleft( frac{x}{a} + frac{y}{b} + frac{z}{c} right)} leq (a + c)(x + y + z))

(Leftrightarrow 4(xa + yb + zc)acleft( frac{x}{a} + frac{y}{b} + frac{z}{c} right) leq (a + c)^{2}(x + y + z)^{2})

(Leftrightarrow (xa + yb + zc)acleft( frac{x}{a} + frac{y}{b} + frac{z}{c} right) leq frac{(a + c)^{2}}{4ac}(x + y + z)^{2}(đpcm))

Bài 13: Cho x, y, z > 0 và (frac{1}{x} + frac{1}{y} + frac{1}{z} = 4). Tìm giá trị lớn nhất của biểu thức:

(P = frac{1}{2x + y + z} + frac{1}{x + 2y + z} + frac{1}{x + y + 2z})

Hướng dẫn giải

Ta có

(frac{1}{x} + frac{1}{y} geq frac{4}{x + y};frac{1}{y} + frac{1}{z} geq frac{4}{y + z})

(Rightarrow frac{1}{x} + frac{1}{y} + frac{1}{y} + frac{1}{z} geq frac{4}{x + y} + frac{4}{y + z} geq frac{16}{x + 2y + z})

(Rightarrow frac{1}{x + 2y + z} leq frac{1}{16}left( frac{1}{x} + frac{2}{y} + frac{1}{z} right)); (frac{1}{2x + y + z} leq frac{1}{16}left( frac{2}{x} + frac{1}{y} + frac{1}{z} right)); (frac{1}{x + y + 2z} leq frac{1}{16}left( frac{1}{x} + frac{1}{y} + frac{2}{z} right))

(S leq frac{1}{16}left( frac{4}{x} + frac{4}{y} + frac{4}{z} right) = 1)

Bài 14: Chứng minh rằng với mọi (x in R), ta có (left( frac{12}{5} right)^{x} + left( frac{15}{4} right)^{x} + left( frac{20}{3} right)^{x} geq 3^{x} + 4^{x} + 5^{x})

Hướng dẫn giải

Ta có:

(left( frac{12}{5} right)^{x} + left( frac{15}{4} right)^{x} geq 2sqrt{left( frac{12}{5} right)^{x}.left( frac{15}{4} right)^{x}} = 2.3^{x})

Tương tự: (left( frac{20}{3} right)^{x} + left( frac{15}{4} right)^{x} geq 2.5^{x}); (left( frac{20}{3} right)^{x} + left( frac{12}{5} right)^{x} geq 2.4^{x})

Cộng các vế tương ứng => điều phải chứng minh.

Bài 15: Cho (x,y > 0)và thỏa mãn (x + y leq 1.) Tìm GTNN của (P = frac{1}{x^{2} + y^{2}} + frac{1}{xy} + 4xy.)

Hướng dẫn giải

Ta dễ thấy điểm rơi đạt tại: (x = y = frac{1}{2}.)

(P = frac{1}{x^{2} + y^{2}} + frac{1}{xy} + 4xy)

(= left( frac{1}{x^{2} + y^{2}} + frac{1}{2xy} right) + left( 4xy + frac{1}{4xy} right) + frac{1}{4xy})

(geq frac{4}{(x + y)^{2}} + 2 + frac{1}{(x + y)^{2}} geq 7.)

Vậy: (MinP = 7 Leftrightarrow x = y = frac{1}{2}.)

III. Bài tập bất đẳng thức lớp 9

Bài 1: Tìm giá trị nhỏ nhất của các biểu thức sau:

a, (B = frac{{left( {x + 4} right)left( {x + 9} right)}}{x})với x > 0

(gợi ý: biến đổi (B = frac{{left( {x + 4} right)left( {x + 9} right)}}{x} = frac{{{x^2} + 13x + 36}}{x} = x + 13 + frac{{36}}{x}) rồi áp dụng bất đẳng thức Cô si)

b, (C = frac{{{{left( {x + 10} right)}^2}}}{x}) với x > 0

c, (D = frac{x}{3} + frac{3}{{x – 2}})với x > 2

(gợi ý: biến đổi rồi áp dụng bất đẳng thức Cô si)

Bài 2: Tìm giá trị nhỏ nhất của biểu thức (P = x + frac{1}{y} + frac{4}{{x – y}}) với x > y > 0

(gợi ý: biến đổi (P = x – y + frac{4}{{x – y}} + y + frac{1}{y}))

Bài 3: Với a, b, c là các số thực không âm, chứng minh:

(left( {a + b + c} right)left( {frac{1}{a} + frac{1}{b} + frac{1}{c}} right) ge 9)

(gợi ý áp dụng bất đẳng thức Cô si cho ba số a, b, c không âm)

Bài 4: Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh rằng:

(frac{{b + c}}{a} + frac{{c + a}}{b} + frac{{a + b}}{c} ge 6)

(gợi ý sử dụng phương pháp làm trội)

Bài 5. Cho (x,y > 0)và thỏa mãn (x + y leq 1.) Tìm GTNN của (P = frac{1}{1 + x^{2} + y^{2}} + frac{1}{2xy}.)

Bài 6. Cho (x, y > 0) và thỏa mãn (x + y leq 4). Tìm GTNN của biểu thức (P = frac{2}{x^{2} + y^{2}} + frac{35}{xy} + 2xy).

Bài 7. Cho (a, b > 0) và thỏa mãn (a + b leq 4). Tìm GTNN của biểu thức (S = frac{1}{a^{2} + b^{2}} + frac{25}{ab} + ab).

Bài 8. Cho (x, y > 0) và thỏa mãn ((x + y – 1)^{2} = xy). Tìm GTNN của biểu thức (P = frac{1}{x^{2} + y^{2}} + frac{1}{xy} + frac{sqrt{xy}}{x + y}).

Bài 9. Cho (x, y > 0) và thỏa mãn (xy + 4 leq 2y). Tìm GTNN của biểu thức (A = frac{x^{2} + 2y^{2}}{xy}).

Bài 10. Cho (a, b > 0) và thỏa mãn (ab + 4 leq 2b). Tìm GTLN của biểu thức (B = frac{ab}{a^{2} + 2b^{2}}).

Bài 11. Cho (x, y > 0) và thỏa mãn (xy + 1 leq x). Tìm GTLN của biểu thức (Q = frac{x + y}{sqrt{3x^{2} – xy + y^{2}}}).

Tài liệu quá dài để hiển thị hết — hãy nhấn Tải về để xem trọn bộ!

========================

Có thể khẳng định rằng, bất đẳng thức Cô si là một trong những kiến thức trọng tâm của Toán lớp 9, giữ vai trò then chốt trong quá trình ôn luyện và chinh phục các bài toán khó trong đề thi tuyển sinh vào lớp 10. Khi hiểu rõ bản chất và áp dụng đúng phương pháp, học sinh hoàn toàn có thể biến những bài toán tưởng chừng phức tạp trở nên đơn giản và dễ tiếp cận hơn.

Thông qua chuyên đề này, việc luyện tập thường xuyên các dạng bài liên quan đến bất đẳng thức Cô si sẽ giúp học sinh:

  • Nâng cao tư duy lập luận và khả năng chứng minh

  • Tránh những lỗi sai phổ biến khi làm bài thi

  • Tăng tốc độ giải toán và tối ưu điểm số

Để đạt hiệu quả cao nhất, học sinh nên kết hợp học lý thuyết, phân tích ví dụ mẫu và thực hành nhiều bài tập đa dạng theo mức độ. Khi đã làm chủ bất đẳng thức Cô si, bạn sẽ có thêm một “vũ khí” quan trọng trong hành trình chinh phục kỳ thi vào lớp 10 một cách tự tin và vững vàng.

Previous Post

Sản phẩm vật chất có giá trị lịch sử, văn hóa, bao gồm các di tích lịch sử – văn hóa, danh lam thắng cảnh, các di vật, cổ vật, bảo vật quốc gia được gọi là gì?

Next Post

Tổng hợp đề thi chọn học sinh giỏi Toán 9 năm học 2025-2026 tại Hà Nội

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

32 Đề thi Cuối kì 1 Toán 7 Kết nối tri thức (có đáp án, cấu trúc mới)

by Tranducdoan
30/12/2025
0
0

Với bộ 32 Đề thi Cuối Học kì 1 Toán lớp 7 Kết nối tri thức năm 2025 có đáp...

Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM

by Tranducdoan
30/12/2025
0
0

Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh...

Giáo dục 16:34, 10/05/2025 GMT+7

by Tranducdoan
30/12/2025
0
0

Thầy Nguyễn Viết Tuyên, Hiệu trưởng Trường THCS Tân Phú cho biết: Vào sáng thứ Năm, ngày 8-5, hơn 600...

Sách bài tập Toán 6 (tập 1) (Kết Nối Tri Thức Với Cuộc Sống)

by Tranducdoan
30/12/2025
0
0

Sách BÀI TẬP TOÁN 6 (Kết nối tri thức với cuộc sống) gồm hai tập, là tài liệu bổ trợ...

Load More
Next Post

Tổng hợp đề thi chọn học sinh giỏi Toán 9 năm học 2025-2026 tại Hà Nội

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

32 Đề thi Cuối kì 1 Toán 7 Kết nối tri thức (có đáp án, cấu trúc mới)

30/12/2025

Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM

30/12/2025

Giáo dục 16:34, 10/05/2025 GMT+7

30/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.