Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Tin tức

Xem tài liệu

by Tranducdoan
30/12/2025
in Tin tức
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. Bài viết này Vted tổng hợp và giới thiệu lại một số công thức tính nhanh thể tích của khối tứ diện cho một số trường hợp đặc biệt hay gặp
  2. Đồng thời trình bày công thức tổng quát tính thể tích cho khối tứ diện bất kì khi biết độ dài tất cả 6 cạnh của tứ diện. Việc ghi nhớ các công thức này giúp các em giải quyết nhanh một số dạng bài khó về thể tích khối tứ diện trong đề thi THPT Quốc Gia 2019 – Môn Toán.
    1. >>Xem thêm Thể tích khối chóp cụt và ứng dụng
    2. >>Xem đề thi Thể tích tứ diện và các trường hợp đặc biệt
    3. >>Xem thêm bài giảng và đề thi vận dụng cao Thể tích đa diện
    4. >>Xem thêm Tóm tắt lý thuyết và Nón – trụ – Cầu
  3. Công thức 1: Khối tứ diện đều
  4. Công thức 2: Khối tứ diện vuông (các góc tại một đỉnh của tứ diện là góc vuông)
  5. Công thức 3: Khối tứ diện gần đều (các cặp cạnh đối tương ứng bằng nhau)
    1. Ví dụ 1: Chokhối tứ diện $ABCD$có $AB=CD=8,AD=BC=5$ và $AC=BD=7.$ Thể tích khối tứ diện đã cho bằng
    2. A. $frac{sqrt{30}}{3}.$
    3. B. $frac{20sqrt{11}}{3}.$
    4. C. $sqrt{30}.$
    5. D. $20sqrt{11}.$
    6. Ví dụ 2: Cho tứ diện $ABCD$ có $AB=CD=8,AD=BC=5$ và $AC=BD=7.$ Gọi $M$ là trung điểm cạnh $AB.$Khoảng cách từ điểm $A$ đến mặt phẳng $(CMD)$bằng
    7. A. $frac{sqrt{31}}{2}.$
    8. B. $frac{sqrt{55}}{2}.$
    9. C. $frac{sqrt{21}}{2}.$
    10. D. $frac{sqrt{33}}{2}.$
    11. Ví dụ 3: Khối tứ diện $ABCD$ có $AB=CD=5a,AC=BD=6a,AD=BC=7a$ có thể tích bằng
  6. Công thức 4: Khối tứ diện có khoảng cách và góc giữa cặp cạnh đối diện của tứ diện
    1. Ví dụ 1.Cho khối tứ diện $ABCD$ có $AB=AC=BD=CD=1.$ Khi thể tích khối tứ diện $ABCD$ đạt giá trị lớn nhất thì khoảng cách giữa hai đường thẳng $AD$ và $BC$ bằng
    2. A. $frac{2}{sqrt{3}}.$
    3. B. $frac{1}{sqrt{3}}.$
    4. C. $frac{1}{sqrt{2}}.$
    5. D. $frac{1}{3}.$
  7. >>Lời giải chi tiết:
    1. Ví dụ 2: Cho hai mặt cầu $({{S}_{1}}),({{S}_{2}})$ có cùng tâm $I$ và bán kính lần lượt ${{R}_{1}}=2,{{R}_{2}}=sqrt{10}.$ Xét tứ diện $ABCD$ có hai đỉnh $A,B$ nằm trên $({{S}_{1}});$ hai đỉnh $C,D$ nằm trên $({{S}_{2}}).$ Thể tích khối tứ diện $ABCD$ có giá trị lớn nhất bằng
    2. Ví dụ 3: Cho một hình trụ có thiết diện qua trục là một hình vuông cạnh bằng $a.$ Biết rằng $AB$ và $CD$ là hai đường kính tương ứng của hai đáy và góc giữa hai đường thẳng $AB$ và $CD$ bằng $30{}^circ .$ Tính thể tích khối tứ diện $ABCD.$
    3. Ví dụ 4: Một người thợ có một khối đá hình trụ. Kẻ hai đường kính $MN,text{ }PQ$ lần lượt trên hai đáy sao cho $MNbot PQ.$ Người thợ đó cắt khối đá theo các mặt cắt đi qua $3$ trong $4$ điểm $M,text{ }N,text{ }P,text{ }Q$ để thu được khối đá có hình tứ diện $MNPQ.$ Biết rằng thể tích khối tứ diện $MNPQ$ bằng $64text{ }d{{m}^{3}}.$ Tính thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến $1$ chữ số thập phân).
  8. Công thức 5: Khối tứ diện biết diện tích hai mặt kề nhau
    1. Ví dụ 1: Cho khối chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $A,AB=a,widehat{SBA}=widehat{SCA}=90{}^circ ,$ góc giữa hai mặt phẳng $(SAB)$ và $(SAC)$ bằng $60{}^circ .$ Thể tích của khối chóp đã cho bằng
    2. Ví dụ 2: Cho tứ diện $ABCD$ có $widehat{ABC}=widehat{BCD}=widehat{CDA}={{90}^{0}},BC=a,CD=2a,cos left( (ABC),(ACD) right)=dfrac{sqrt{130}}{65}.$ Thể tích khối tứ diện $ABCD$ bằng
    3. Ví dụ 4: Cho tứ diện $ABCD$ có $ABC$ và $ABD$ là tam giác đều cạnh bằng $a.$ Thể tích khối tứ diện $ABCD$ có giá trị lớn nhất bằng
  9. Công thức 6:Mở rộng cho khối chóp có diện tích mặt bên và mặt đáy
  10. Công thức 7: Khối tứ diện khi biết các góc tại cùng một đỉnh
    1. Ví dụ 1: Cho hình chóp $S.ABC$ có $SA=a,SB=2a,SC=4a$ và $widehat{ASB}=widehat{BSC}=widehat{CSA}={{60}^{0}}.$ Tính thể tích khối chóp $S.ABC$ theo $a.$
    2. Ví dụ 2: Cho khối lăng trụ [ABC.{A}'{B}'{C}’] có $widehat{A{A}’B}=widehat{B{A}’C}=widehat{C{A}’A}={{60}^{0}}$ và $A{A}’=3a,B{A}’=4a,C{A}’=5a.$ Thể tích khối lăng trụ đã cho bằng
    3. Ví dụ 3: Khối tứ diện $ABCD$ có $AB=5,CD=sqrt{10},AC=2sqrt{2},BD=3sqrt{3},AD=sqrt{22},BC=sqrt{13}$ có thể tích bằng
      1. >>Xem thêm: Công thức tổng quát thể tích khối chóp đều
      2. >>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn
      3. >>Xem thêm [Vted.vn] – Công thức giải nhanh Hình phẳng toạ độ Oxy
      4. >>Xem thêm [Vted.vn] – Công thức giải nhanh hình toạ độ Oxyz
      5. >>Xem thêm kiến thức về Cấp số cộng và cấp số nhân
      6. >>Xem thêm Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất
      7. >>Tải về Tổng hợp các công thức lượng giác cần nhớ
      8. >>Sách Khám Phá Tư Duy Kỹ Thuật Giải Bất Đẳng Thức Bài Toán Min- Max

Bài viết này Vted tổng hợp và giới thiệu lại một số công thức tính nhanh thể tích của khối tứ diện cho một số trường hợp đặc biệt hay gặp

Đồng thời trình bày công thức tổng quát tính thể tích cho khối tứ diện bất kì khi biết độ dài tất cả 6 cạnh của tứ diện. Việc ghi nhớ các công thức này giúp các em giải quyết nhanh một số dạng bài khó về thể tích khối tứ diện trong đề thi THPT Quốc Gia 2019 – Môn Toán.

cac cong thuc tinh the tich tu dien

Bài viết này trích lược một số công thức nhanh hay dùng cho khối tứ diện. Các công thức nhanh khác liên quan đến thể tích khối tứ diện và thể tích khối lăng trụ bạn đọc tham khảo khoá COMBO X do Vted phát hành tại đây https://vted.vn/khoa-hoc/nhom/combo-4-khoa-luyen-thi-thpt-quoc-gia-2023-mon-toan-danh-cho-teen-2k5-18

>>Xem thêm Thể tích khối chóp cụt và ứng dụng

>>Xem đề thi Thể tích tứ diện và các trường hợp đặc biệt

>>Xem thêm bài giảng và đề thi vận dụng cao Thể tích đa diện

>>Xem thêm Tóm tắt lý thuyết và Nón – trụ – Cầu

Công thức tổng quát: Khối tứ diện $ABCD$ có $BC=a,CA=b,AB=c,AD=d,BD=e,CD=f$ ta có công thức tính thể tích của tứ diện theo sáu cạnh như sau: [V=dfrac{1}{12}sqrt{M+N+P-Q},] trong đó [begin{align} & M={{a}^{2}}{{d}^{2}}({{b}^{2}}+{{e}^{2}}+{{c}^{2}}+{{f}^{2}}-{{a}^{2}}-{{d}^{2}}) & N={{b}^{2}}{{e}^{2}}({{a}^{2}}+{{d}^{2}}+{{c}^{2}}+{{f}^{2}}-{{b}^{2}}-{{e}^{2}}) & P={{c}^{2}}{{f}^{2}}({{a}^{2}}+{{d}^{2}}+{{b}^{2}}+{{e}^{2}}-{{c}^{2}}-{{f}^{2}}) & Q={{(abc)}^{2}}+{{(aef)}^{2}}+{{(bdf)}^{2}}+{{(cde)}^{2}} end{align}]

Công thức 1: Khối tứ diện đều

Khối tứ diện đều cạnh $a,$ ta có $V=dfrac{{{a}^{3}}sqrt{2}}{12}.$

Ví dụ 1: Cho tứ diện đều có chiều cao bằng [h]. Thể tích của khối tứ diện đã cho là

A. [V=dfrac{sqrt{3}{{h}^{3}}}{4}].

B. [V=dfrac{sqrt{3}{{h}^{3}}}{8}].

C. [V=dfrac{sqrt{3}{{h}^{3}}}{3}].

D. [V=dfrac{2sqrt{3}{{h}^{3}}}{3}].

Giải. Thể tích tứ diện đều cạnh $a$ là $V=frac{sqrt{2}{{a}^{3}}}{12}.$

Chiều cao tứ diện đều là $h=frac{3V}{S}=frac{3left( frac{sqrt{2}{{a}^{3}}}{12} right)}{frac{sqrt{3}{{a}^{2}}}{4}}=sqrt{frac{2}{3}}aRightarrow a=sqrt{frac{3}{2}}h.$

Vì vậy $V=frac{sqrt{2}}{12}{{left( sqrt{frac{3}{2}}h right)}^{3}}=frac{sqrt{3}{{h}^{3}}}{8}.$ Chọn đáp án B.

Công thức 2: Khối tứ diện vuông (các góc tại một đỉnh của tứ diện là góc vuông)

Với tứ diện $ABCD$ có $AB,AC,AD$ đôi một vuông góc và $AB=a,AC=b,AD=c,$ ta có $V=dfrac{1}{6}abc.$

Công thức 3: Khối tứ diện gần đều (các cặp cạnh đối tương ứng bằng nhau)

Với tứ diện $ABCD$ có $AB=CD=a,BC=AD=b,AC=BD=c$ ta có [V=dfrac{sqrt{2}}{12}.sqrt{({{a}^{2}}+{{b}^{2}}-{{c}^{2}})({{b}^{2}}+{{c}^{2}}-{{a}^{2}})({{a}^{2}}+{{c}^{2}}-{{b}^{2}})}.]

cac cong thuc tinh the tich tu dien 1

Ví dụ 1: Chokhối tứ diện $ABCD$có $AB=CD=8,AD=BC=5$ và $AC=BD=7.$ Thể tích khối tứ diện đã cho bằng

A. $frac{sqrt{30}}{3}.$

B. $frac{20sqrt{11}}{3}.$

C. $sqrt{30}.$

D. $20sqrt{11}.$

Giải. Ta có ${{V}_{ABCD}}=frac{sqrt{2}}{12}sqrt{({{8}^{2}}+{{5}^{2}}-{{7}^{2}})({{5}^{2}}+{{7}^{2}}-{{8}^{2}})({{7}^{2}}+{{8}^{2}}-{{5}^{2}})}=frac{20sqrt{11}}{3}.$ Chọn đáp án B.

Ví dụ 2: Cho tứ diện $ABCD$ có $AB=CD=8,AD=BC=5$ và $AC=BD=7.$ Gọi $M$ là trung điểm cạnh $AB.$Khoảng cách từ điểm $A$ đến mặt phẳng $(CMD)$bằng

A. $frac{sqrt{31}}{2}.$

B. $frac{sqrt{55}}{2}.$

C. $frac{sqrt{21}}{2}.$

D. $frac{sqrt{33}}{2}.$

Giải. Ta có ${{V}_{AMCD}}=frac{AM}{AB}{{V}_{ABCD}}=frac{1}{2}{{V}_{ABCD}}=frac{sqrt{2}}{24}sqrt{({{8}^{2}}+{{5}^{2}}-{{7}^{2}})({{5}^{2}}+{{7}^{2}}-{{8}^{2}})({{7}^{2}}+{{8}^{2}}-{{5}^{2}})}=frac{10sqrt{11}}{3}.$

Tam giác $MCD$ có $CD=8$ và theo công thức đường trung tuyến ta có:

$MC=sqrt{frac{2(C{{A}^{2}}+C{{B}^{2}})-A{{B}^{2}}}{4}}=sqrt{frac{2({{7}^{2}}+{{5}^{2}})-{{8}^{2}}}{4}}=sqrt{21}.$

và $MD=sqrt{frac{2(D{{A}^{2}}+D{{B}^{2}})-A{{B}^{2}}}{4}}=sqrt{frac{2({{5}^{2}}+{{7}^{2}})-{{8}^{2}}}{4}}=sqrt{21}.$

Vậy ${{S}_{MCD}}=4sqrt{5}.$ Do đó $d(A,(MCD))=frac{3{{V}_{AMCD}}}{{{S}_{MCD}}}=frac{10sqrt{11}}{4sqrt{5}}=frac{sqrt{55}}{2}.$ Chọn đáp án B.

Ví dụ 3: Khối tứ diện $ABCD$ có $AB=CD=5a,AC=BD=6a,AD=BC=7a$ có thể tích bằng

A. $sqrt{95}{{a}^{3}}.$

B. $8sqrt{95}{{a}^{3}}.$

C. $2sqrt{95}{{a}^{3}}.$

D. $4sqrt{95}{{a}^{3}}.$

Giải. Áp dụng công thức tính thể tích khối tứ diện gần đều có

${{V}_{ABCD}}=dfrac{sqrt{2}}{12}sqrt{left( {{5}^{2}}+{{6}^{2}}-{{7}^{2}} right)left( {{6}^{2}}+{{7}^{2}}-{{5}^{2}} right)left( {{7}^{2}}+{{5}^{2}}-{{6}^{2}} right)}{{a}^{3}}=2sqrt{95}{{a}^{3}}.$

Chọn đáp án C.

Xem thêm tại đây: https://www.vted.vn/tin-tuc/cong-thuc-tong-quat-tinh-the-tich-cua-mot-khoi-tu-dien-bat-ki-va-cac-truong-hop-dac-biet-4345.html

Công thức 4: Khối tứ diện có khoảng cách và góc giữa cặp cạnh đối diện của tứ diện

Tứ diện $ABCD$ có $AD=a,BC=b,d(AD,BC)=d,(AD,BC)=alpha ,$ ta có $V=dfrac{1}{6}abdsin alpha .$

Ví dụ 1.Cho khối tứ diện $ABCD$ có $AB=AC=BD=CD=1.$ Khi thể tích khối tứ diện $ABCD$ đạt giá trị lớn nhất thì khoảng cách giữa hai đường thẳng $AD$ và $BC$ bằng

A. $frac{2}{sqrt{3}}.$

B. $frac{1}{sqrt{3}}.$

C. $frac{1}{sqrt{2}}.$

D. $frac{1}{3}.$

>>Lời giải chi tiết:cac cong thuc tinh the tich tu dien 2

Ví dụ 2: Cho hai mặt cầu $({{S}_{1}}),({{S}_{2}})$ có cùng tâm $I$ và bán kính lần lượt ${{R}_{1}}=2,{{R}_{2}}=sqrt{10}.$ Xét tứ diện $ABCD$ có hai đỉnh $A,B$ nằm trên $({{S}_{1}});$ hai đỉnh $C,D$ nằm trên $({{S}_{2}}).$ Thể tích khối tứ diện $ABCD$ có giá trị lớn nhất bằng

A. $3sqrt{2}.$

B. $2sqrt{3}.$

C. $6sqrt{3}.$

D. $6sqrt{2}.$

Giải. Gọi $a,b$ lần lượt là khoảng cách từ tâm $I$ đến hai đường thẳng $AB,CD.$

Ta có $AB=2sqrt{R_{1}^{2}-{{a}^{2}}}=2sqrt{4-{{a}^{2}}};CD=2sqrt{R_{2}^{2}-{{b}^{2}}}=2sqrt{10-{{b}^{2}}}$ và $d(AB,CD)le d(I,AB)+d(I,CD)=a+b$ và $sin (AB,CD)le 1.$

Do đó áp dụng công thức tính thể tích tứ diện theo khoảng cách chéo nhau của cặp cạnh đối diện có:

$begin{gathered} {V_{ABCD}} = frac{1}{6}AB.CD.d(AB,CD).sin (AB,CD) leqslant frac{2}{3}(a + b)sqrt {4 – {a^2}} sqrt {10 – {b^2}} = frac{2}{3}left( {asqrt {4 – {a^2}} sqrt {10 – {b^2}} + bsqrt {10 – {b^2}} sqrt {4 – {a^2}} } right) = frac{2}{3}left( {sqrt {4{a^2} – {a^4}} sqrt {10 – {b^2}} + sqrt {frac{{10{b^2} – {b^4}}}{2}} sqrt {8 – 2{a^2}} } right) leqslant frac{2}{3}sqrt {left( {4{a^2} – {a^4} + 8 – 2{a^2}} right)left( {10 – {b^2} + frac{{10{b^2} – {b^4}}}{2}} right)} = frac{2}{3}sqrt {left( { – {{({a^2} – 1)}^2} + 9} right)left( { – frac{1}{2}{{({b^2} – 4)}^2} + 18} right)} leqslant frac{2}{3}sqrt {9.18} = 6sqrt 2 . end{gathered} $

Dấu bằng đạt tại $(a;b)=(1;2).$ Chọn đáp án D.

Ví dụ 3: Cho một hình trụ có thiết diện qua trục là một hình vuông cạnh bằng $a.$ Biết rằng $AB$ và $CD$ là hai đường kính tương ứng của hai đáy và góc giữa hai đường thẳng $AB$ và $CD$ bằng $30{}^circ .$ Tính thể tích khối tứ diện $ABCD.$

A. $frac{{{a}^{3}}}{12}.$

B. $frac{{{a}^{3}}sqrt{3}}{6}.$

C. $frac{{{a}^{3}}}{6}.$

D. $frac{{{a}^{3}}sqrt{3}}{12}.$

Có $h=2r=a;{{V}_{ABCD}}=frac{1}{6}AB.CD.d(AB,CD).sin (AB,CD)=frac{1}{3}.2r.2r.h.sin {{30}^{0}}=frac{{{a}^{3}}}{6}.$ Chọn đáp án C.

Ví dụ 4: Một người thợ có một khối đá hình trụ. Kẻ hai đường kính $MN,text{ }PQ$ lần lượt trên hai đáy sao cho $MNbot PQ.$ Người thợ đó cắt khối đá theo các mặt cắt đi qua $3$ trong $4$ điểm $M,text{ }N,text{ }P,text{ }Q$ để thu được khối đá có hình tứ diện $MNPQ.$ Biết rằng thể tích khối tứ diện $MNPQ$ bằng $64text{ }d{{m}^{3}}.$ Tính thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến $1$ chữ số thập phân).

A. $86,8text{ }d{{m}^{3}}.$

B. $237,6text{ }d{{m}^{3}}.$

C. $338,6text{ }d{{m}^{3}}.$

D. $109,6text{ }d{{m}^{3}}.$

Giải. Áp dụng công thức tính thể tích tứ diện theo khoảng cách và góc giữa cặp cạnh đối ta có

${{V}_{MNPQ}}=dfrac{1}{6}MN.PQ.dleft( MN,PQ right).sin left( MN,PQ right)=dfrac{1}{6}.2r.2r.h.sin {{90}^{0}}=dfrac{2}{3}{{r}^{2}}h=dfrac{2}{3pi }V{{T}_{T}}$

Thể tích lượng đá bị cắt bỏ là ${{V}_{T}}-{{V}_{MNPQ}}=left( dfrac{3pi }{2}-1 right){{V}_{MNPQ}}approx 237,6text{ d}{{text{m}}^{text{3}}}.$ Chọn đáp án B.

Công thức 5: Khối tứ diện biết diện tích hai mặt kề nhau

cac cong thuc tinh the tich tu dien 3

Ví dụ 1: Cho khối chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cân tại $A,AB=a,widehat{SBA}=widehat{SCA}=90{}^circ ,$ góc giữa hai mặt phẳng $(SAB)$ và $(SAC)$ bằng $60{}^circ .$ Thể tích của khối chóp đã cho bằng

A. ${{a}^{3}}.$

B. $frac{{{a}^{3}}}{3}.$

C. $frac{{{a}^{3}}}{2}.$

D. $frac{{{a}^{3}}}{6}.$

Lời giải chi tiết. Gọi $H=mathbf{h/c(S,(ABC))}$ ta có $left{ begin{gathered} AB bot SB hfill AB bot SH hfill end{gathered} right. Rightarrow AB bot (SBH) Rightarrow AB bot BH;left{ begin{gathered} AC bot SC hfill AC bot SH hfill end{gathered} right. Rightarrow AC bot (SCH) Rightarrow AC bot CH.$ Kết hợp với $ABC$ là tam giác vuông cân tại $A,AB=a$ suy ra $ABHC$ là hình vuông.

cac cong thuc tinh the tich tu dien 4Đặt $h=SHRightarrow {{V}_{S.ABC}}=frac{1}{3}{{S}_{ABC}}.SH=frac{{{a}^{2}}h}{6}(1).$

Mặt khác ${{V}_{S.ABC}}=frac{2{{S}_{SAB}}.{{S}_{SAC}}.sin left( (SAB),(SAC) right)}{3SA}=frac{2left( frac{asqrt{{{a}^{2}}+{{h}^{2}}}}{2} right)left( frac{asqrt{{{a}^{2}}+{{h}^{2}}}}{2} right)frac{sqrt{3}}{2}}{3sqrt{2{{a}^{2}}+{{h}^{2}}}}(2).$

Từ (1) và (2) suy ra $h=aRightarrow V=frac{{{a}^{3}}}{6}.$ Chọn đáp án D.

Ví dụ 2: Cho tứ diện $ABCD$ có $widehat{ABC}=widehat{BCD}=widehat{CDA}={{90}^{0}},BC=a,CD=2a,cos left( (ABC),(ACD) right)=dfrac{sqrt{130}}{65}.$ Thể tích khối tứ diện $ABCD$ bằng

A. $frac{{{a}^{3}}}{3}.$

B. ${{a}^{3}}.$

C. $frac{2{{a}^{3}}}{3}.$

D. $3{{a}^{3}}.$

Lời giải chi tiết. Gọi $H=mathbf{h/c(A,(BCD))}.$ Đặt $AH=hRightarrow {{V}_{ABCD}}=frac{1}{3}{{S}_{BCD}}.AH=frac{1}{3}.frac{1}{2}CB.CD.AH=frac{{{a}^{2}}h}{3}(1).$

cac cong thuc tinh the tich tu dien 5

Ta có $left{ begin{gathered} CB bot BA hfill CB bot AH hfill end{gathered} right. Rightarrow CB bot (ABH) Rightarrow CB bot HB.$ Tương tự $left{ begin{gathered} CD bot DA hfill CD bot AH hfill end{gathered} right. Rightarrow CD bot (ADH) Rightarrow CD bot HD.$

Kết hợp với $widehat{BCD}={{90}^{0}}Rightarrow HBCD$ là hình chữ nhật.

Suy ra $AB=sqrt{A{{H}^{2}}+H{{B}^{2}}}=sqrt{{{h}^{2}}+4{{a}^{2}}},AD=sqrt{A{{H}^{2}}+H{{D}^{2}}}=sqrt{{{h}^{2}}+{{a}^{2}}};AC=sqrt{A{{B}^{2}}+B{{C}^{2}}}=sqrt{{{h}^{2}}+5{{a}^{2}}}.$

Suy ra ${{S}_{ABC}}=frac{1}{2}AB.BC=frac{asqrt{{{h}^{2}}+4{{a}^{2}}}}{2};{{S}_{ACD}}=frac{1}{2}AD.DC=asqrt{{{h}^{2}}+{{a}^{2}}}.$

Suy ra ${{V}_{ABCD}}=frac{2{{S}_{ABC}}.{{S}_{ACD}}.sin left( (ABC),(ACD) right)}{3AC}=frac{{{a}^{2}}sqrt{{{h}^{2}}+4{{a}^{2}}}sqrt{{{h}^{2}}+{{a}^{2}}}}{3sqrt{{{h}^{2}}+5{{a}^{2}}}}sqrt{1-{{left( frac{sqrt{130}}{65} right)}^{2}}}(2).$

Kết hợp (1), (2) suy ra: $h=3aRightarrow {{V}_{ABCD}}={{a}^{3}}.$ Chọn đáp án B.

Ví dụ 3: Cho hình chóp $S.ABCD$ có đáy là hình thoi cạnh $a,widehat{ABC}={{120}^{0}}.$ Cạnh bên $SA$ vuông góc với đáy và góc giữa hai mặt phẳng $(SBC),(SCD)$ bằng ${{60}^{0}},$ khi đó $SA$ bằng

A. $dfrac{sqrt{6}a}{4}.$

B. $sqrt{6}a.$

C. $dfrac{sqrt{6}a}{2}.$

D. $dfrac{sqrt{3}a}{2}.$

Có $SA=x>0Rightarrow {{V}_{S.BCD}}=dfrac{1}{3}{{S}_{BCD}}.SA=dfrac{sqrt{3}x}{12}(1),left( a=1 right).$

cac cong thuc tinh the tich tu dien 6

Mặt khác ${{V}_{S.BCD}}=dfrac{2{{S}_{SBC}}.{{S}_{SCD}}.sin left( (SBC),(SCD) right)}{3SC}=dfrac{2{{left( dfrac{sqrt{4{{x}^{2}}+3}}{4} right)}^{2}}dfrac{sqrt{3}}{2}}{3sqrt{{{x}^{2}}+3}}(2).$

Trong đó $BC=1,SB=sqrt{{{x}^{2}}+1},SC=sqrt{{{x}^{2}}+3}Rightarrow {{S}_{SBC}}=dfrac{sqrt{4{{x}^{2}}+3}}{4};Delta SBC=Delta SDC(c-c-c)Rightarrow {{S}_{SCD}}=dfrac{sqrt{4{{x}^{2}}+3}}{4}.$

Từ (1) và (2) suy ra [x=dfrac{sqrt{6}}{4}.] Chọn đáp án A.

Ví dụ 4: Cho tứ diện $ABCD$ có $ABC$ và $ABD$ là tam giác đều cạnh bằng $a.$ Thể tích khối tứ diện $ABCD$ có giá trị lớn nhất bằng

A. $dfrac{{{a}^{3}}}{8}.$

B. $dfrac{{{a}^{3}}sqrt{2}}{12}.$

C. $dfrac{{{a}^{3}}sqrt{3}}{8}.$

D. $dfrac{{{a}^{3}}sqrt{3}}{12}.$

Có ${{V}_{ABCD}}=dfrac{2{{S}_{ABC}}{{S}_{ABD}}sin left( (ABC),(ABD) right)}{3AB}=dfrac{2left( dfrac{sqrt{3}{{a}^{2}}}{4} right)left( dfrac{sqrt{3}{{a}^{2}}}{4} right)}{3a}sin left( (ABC),(ABD) right)le dfrac{2left( dfrac{sqrt{3}{{a}^{2}}}{4} right)left( frac{sqrt{3}{{a}^{2}}}{4} right)}{3a}=dfrac{{{a}^{3}}}{8}.$

Dấu bằng đạt tại $(ABC)bot (ABD).$ Chọn đáp án A.

Ví dụ 5: Cho lăng trụ $ABC.{A}'{B}'{C}’$ có diện tích tam giác ${A}’BC$ bằng $4,$ khoảng cách từ $A$ đến $BC$ bằng $3,$ góc giữa hai mặt phẳng $left( {A}’BC right)$ và $left( {A}'{B}'{C}’ right)$ bằng $30{}^circ .$ Thể tích khối lăng trụ $ABC.{A}'{B}'{C}’$ bằng

A. $3sqrt{3}.$ B. $6.$ C. $2.$ D. $12.$

Giải. Áp dụng công thức tính thể tích tứ diện cho trường hợp biết góc và diện tích của hai mặt

${{V}_{ABC.{A}'{B}'{C}’}}=3{{V}_{{A}’.ABC}}=3left( dfrac{2{{S}_{{A}’BC}}.{{S}_{ABC}}.sin left( left( {A}’BC right),left( ABC right) right)}{3BC} right)$

$=dfrac{{{S}_{{A}’BC}}.dleft( A,BC right).BC.sin left( left( {A}’BC right),left( ABC right) right)}{BC}={{S}_{{A}’BC}}.dleft( A,BC right).sin left( left( {A}’BC right),left( ABC right) right)=4.3.dfrac{1}{2}=6.$ Chọn đáp án B.

Công thức 6:Mở rộng cho khối chóp có diện tích mặt bên và mặt đáy

Khối chóp $S.{{A}_{1}}{{A}_{2}}…{{A}_{n}}$ có $V=dfrac{2{{S}_{S{{A}_{1}}{{A}_{2}}}}.{{S}_{{{A}_{1}}{{A}_{2}}…{{A}_{n}}}}.sin left( (S{{A}_{1}}{{A}_{2}}),({{A}_{1}}{{A}_{2}}…{{A}_{n}}) right)}{3{{A}_{1}}{{A}_{2}}}.$

Công thức 7: Khối tứ diện khi biết các góc tại cùng một đỉnh

Khối chóp $S.ABC$ có $SA=a,SB=b,SC=c,widehat{BSC}=alpha ,widehat{CSA}=beta ,widehat{ASA}=gamma .$

Khi đó $V=dfrac{abc}{6}sqrt{1+2cos alpha cos beta cos gamma -{{cos }^{2}}alpha -{{cos }^{2}}beta -{{cos }^{2}}gamma }.$

cac cong thuc tinh the tich tu dien 7

Ví dụ 1: Cho hình chóp $S.ABC$ có $SA=a,SB=2a,SC=4a$ và $widehat{ASB}=widehat{BSC}=widehat{CSA}={{60}^{0}}.$ Tính thể tích khối chóp $S.ABC$ theo $a.$

A. $dfrac{8{{a}^{3}}sqrt{2}}{3}.$

B. $dfrac{2{{a}^{3}}sqrt{2}}{3}.$

C. $dfrac{{{a}^{3}}sqrt{2}}{3}.$

D. $dfrac{4{{a}^{3}}sqrt{2}}{3}.$

Giải. Áp dụng công thức tính thể tích tứ diện theo các góc tại một đỉnh ta có

${{V}_{S.ABC}}=dfrac{1}{6}SA.SB.SCsqrt{1+2cos widehat{ASB}cos widehat{BSC}cos widehat{CSA}-{{cos }^{2}}widehat{ASB}-{{cos }^{2}}widehat{BSC}-{{cos }^{2}}widehat{CSA}}$

$=dfrac{1}{6}a.2a.4asqrt{1+2left( dfrac{1}{2} right)left( dfrac{1}{2} right)left( dfrac{1}{2} right)-{{left( dfrac{1}{2} right)}^{2}}-{{left( dfrac{1}{2} right)}^{2}}-{{left( dfrac{1}{2} right)}^{2}}}=dfrac{2sqrt{2}}{3}{{a}^{3}}.$

Chọn đáp án B.

https://vted.vn/tin-tuc/cong-thuc-tong-quat-tinh-the-tich-cua-mot-khoi-tu-dien-bat-ki-va-cac-truong-hop-dac-biet-4345.html

Cách 2:cac cong thuc tinh the tich tu dien 8

Ví dụ 2: Cho khối lăng trụ [ABC.{A}'{B}'{C}’] có $widehat{A{A}’B}=widehat{B{A}’C}=widehat{C{A}’A}={{60}^{0}}$ và $A{A}’=3a,B{A}’=4a,C{A}’=5a.$ Thể tích khối lăng trụ đã cho bằng

A. $10sqrt{2}{{a}^{3}}.$

B. $15sqrt{2}{{a}^{3}}.$

C. $5sqrt{2}{{a}^{3}}.$

D. $30sqrt{2}{{a}^{3}}.$

Giải. Ta có ${{V}_{ABC.{A}'{B}'{C}’}}=3{{V}_{{A}’.ABC}}$ và áp dụng công thức tính thể tích khối tứ diện theo các góc tại một đỉnh ta được

$=3.dfrac{1}{6}{A}’A.{A}’B.{A}’Csqrt{1+2cos widehat{A{A}’B}cos widehat{B{A}’C}cos widehat{C{A}’A}-{{cos }^{2}}widehat{A{A}’B}-{{cos }^{2}}widehat{B{A}’C}-{{cos }^{2}}widehat{C{A}’A}}$

$=dfrac{1}{2}.3a.4a.5asqrt{1+2{{left( dfrac{1}{2} right)}^{3}}-3{{left( dfrac{1}{2} right)}^{2}}}=15sqrt{2}{{a}^{3}}.$ Chọn đáp án B.

Ví dụ 3: Khối tứ diện $ABCD$ có $AB=5,CD=sqrt{10},AC=2sqrt{2},BD=3sqrt{3},AD=sqrt{22},BC=sqrt{13}$ có thể tích bằng

A. $20.$

B. $5.$

C. $15.$

D. $10.$

Giải. Tứ diện này có độ dài tất cả các cạnh ta tính các góc tại một đỉnh rồi áp dụng công thức thể tích khối tứ diện dựa trên 3 góc xuất phát từ cùng 1 đỉnh:

Có $left{ begin{gathered}hfill cos widehat{BAD}=dfrac{A{{B}^{2}}+A{{D}^{2}}-B{{D}^{2}}}{2AB.AD}=sqrt{dfrac{2}{11}} hfill cos widehat{DAC}=dfrac{A{{D}^{2}}+A{{C}^{2}}-C{{D}^{2}}}{2AD.AC}=dfrac{5}{2sqrt{11}} hfill cos widehat{CAB}=dfrac{A{{C}^{2}}+A{{B}^{2}}-B{{C}^{2}}}{2AC.AB}=dfrac{1}{sqrt{2}} end{gathered} right..$

Vì vậy ${{V}_{ABCD}}=dfrac{1}{6}.5.2sqrt{2}.sqrt{22}sqrt{1+2sqrt{dfrac{2}{11}}dfrac{5}{2sqrt{11}}dfrac{1}{sqrt{2}}-{{left( sqrt{dfrac{2}{11}} right)}^{2}}-{{left( dfrac{5}{2sqrt{11}} right)}^{2}}-{{left( dfrac{1}{sqrt{2}} right)}^{2}}}=5.$

Chọn đáp án B.

>>Xem thêm Tổng hợp tất cả các công thức tính nhanh bán kính mặt cầu ngoại tiếp khối đa diện

cac cong thuc tinh the tich tu dien 9

>>Xem thêm: Công thức tổng quát thể tích khối chóp đều

>>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn

>>Xem thêm [Vted.vn] – Công thức giải nhanh Hình phẳng toạ độ Oxy

>>Xem thêm [Vted.vn] – Công thức giải nhanh hình toạ độ Oxyz

>>Xem thêm kiến thức về Cấp số cộng và cấp số nhân

>>Xem thêm Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất

>>Tải về Tổng hợp các công thức lượng giác cần nhớ

>>Sách Khám Phá Tư Duy Kỹ Thuật Giải Bất Đẳng Thức Bài Toán Min- Max

cac cong thuc tinh the tich tu dien 10

cac cong thuc tinh the tich tu dien 11

cac cong thuc tinh the tich tu dien 12

Xem tài liệu

Previous Post

Thuật ngữ phòng cháy chữa cháy bằng tiếng Anh (Cập nhật)

Next Post

BÀI 2. PHÉP LAI PHÂN TÍCH – Thư viện SinhhocC2

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Cách làm giàu ý phần phản đề và mở rộng vấn đề bài NLXH

by Tranducdoan
30/12/2025
0
0

Khi chấm bài cho học sinh nói chung, cô Na thấy các bạn đang “khá đuối” ở phần phản đề,...

10+ Cảm nhận bài Người lái đò sông Đà (điểm cao)

by Tranducdoan
30/12/2025
0
0

Cảm nhận bài Người lái đò sông Đà điểm cao, hay nhất được chọn lọc từ những bài văn hay...

Bài 3. Kiểm tra Fisher Exact (Fisher’s Exact Test)

by Tranducdoan
30/12/2025
0
0

Bài kiểm tra Fisher Exact là kiểm tra có ý nghĩa được sử dụng thay cho kiểm tra chi bình...

Hai đường thẳng chéo nhau là gì lớp 11 (chi tiết nhất)

by Tranducdoan
30/12/2025
0
0

Bài viết Hai đường thẳng chéo nhau là gì lớp 11 với phương pháp giải chi tiết giúp học sinh...

Load More
Next Post

BÀI 2. PHÉP LAI PHÂN TÍCH - Thư viện SinhhocC2

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Cách làm giàu ý phần phản đề và mở rộng vấn đề bài NLXH

30/12/2025

Phiếu trắc nghiệm Lịch sử 9 chân trời Bài 16: Cuộc kháng chiến chống thực dân Pháp kết thúc thắng lợi (1951 – 1954)

30/12/2025

10+ Cảm nhận bài Người lái đò sông Đà (điểm cao)

30/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.