Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Công thức lượng giác và cách giải bài tập (hay, chi tiết)

by Tranducdoan
31/12/2025
in Toán tổng hợp
0
Đánh giá bài viết
  • Lý thuyêt bài tập Công thức lượng giác
  • Các dạng bài tập Công thức lượng giác
  • Bài tập tự luyện Công thức lượng giác

Mục Lục Bài Viết

  1. Công thức lượng giác và cách giải bài tập

Công thức lượng giác và cách giải bài tập

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

1. Lý thuyết

a. Công thức cộng:

sin(a+b)  =  sina.cosb  +  sinb.cosa

sin(a−b)  =  sina.cosb−sinb.cosa

cos(a+b)  =  cosa.cosb  −  sina.sinb

cos(a−b)  =  cosa.cosb +  sina.sinb

tan(a+b)  =  tana+tanb1−tana.tanb

tan(a−b)  =  tana−tanb1+tana.tanb

b. Công thức nhân đôi, hạ bậc:

* Công thức nhân đôi:

sin2α=2sinα.cosα

cos2α  =  cos2α−sin2α  =  2cos2α−1  =  1−2sin2α

tan2α  =  2tanα1−tan2α

* Công thức hạ bậc:

sin2α  =  1−cos2α2cos2α =  1+cos2α2tan2α =  1−cos2α1+cos2α

* Công thức nhân ba:

sin3α=3sinα−4sin3αcos3α=4cos3α−3cosα

c. Công thức biến đổi tích thành tổng:

cosacosb=12cos(a+b)+cos(a−b)sinasinb=−12cos(a+b)−cos(a−b)sinacosb=12sin(a+b)+sin(a−b)

d. Công thức biển đổi tổng thành tích:

cosa+cosb  =  2cosa+b2.cosa−b2

cosa−cosb  =  −2sina+b2.sina−b2

sina+sinb  =  2sina+b2.cosa−b2

sina−sinb  =  2cosa+b2.sina−b2

tana+tanb  =   sin(a+b)cosa.cosb

tana−tanb  =  sin(a−b)cosa.cosb

cota+cotb  =  sin(a+b)sina.sinb

cota−cotb  =  sin(b−a)sina.sinb

2. Các dạng bài

Dạng 3.1: Tính giá trị lượng giác của góc đặc biệt

a. Phương pháp giải:

– Sử dụng định nghĩa giá trị lượng giá của một góc.

– Sử dụng tính chất và bảng giá trị lượng giác đặc biệt.

– Sử dụng các công thức lượng giác.

b. Ví dụ minh họa

Ví dụ 1: Tính:

a. cos37π12;

b. tanπ24+tan7π24.

Lời giải:

a. cos37π12=cos2π+π+π12

=cosπ+π12

=−cosπ12

=−cosπ3−π4

=−cosπ3.cosπ4+sinπ3.sinπ4

=−6+24

b.tanπ24+tan7π24=sinπ3cosπ24.cos7π24

=3cosπ3+cosπ4=26−3

Ví dụ 2: Tính:

a. tanx+π4 biết sinx=35 với π2<x<π;

b. cosα−β biết sinα=513, π2<α<π và , 0<β<π2.

Lời giải:

a. Ta có:

sin2x+cos2x=1⇒cosx=±1−sin2x=±1−925=±45 .

Vì π2<x<π nên cosx=−45

Do đó tanx=sinxcosx=−34.

Ta có: tanx+π4=tanx+tanπ41−tanx.tanπ4=−34+11+34=17.

b. Ta có:

sinα=513, π2<α<π nên cosα=−1−5132=−1213.

cosβ=35, 0<β<π2 nên sinβ=1−352=45.

cosα−β=cosαcosβ+sinαsinβ =−1213.35+513.45=−1665 .

Dạng 3.2: Chứng minh đẳng thức lượng giác

a. Phương pháp giải:

Sử dụng công thức lượng giác (công thức cộng, công thức nhân đôi, công thức hạ bậc, công thức biến đổi tổng thành tích, công thức biến đổi tích thành tổng) và các giá trị lượng giác của các góc liên quan đặc biệt để thực hiện phép biến đổi.

Ta lựa chọn một trong các cách biến đổi sau:

* Cách 1: Dùng hệ thức lượng giác biến đổi một vế thành vế còn lại (vế trái thành vế phải hoặc vế phải thành vế trái)

* Cách 2: Biến đổi đẳng thức cần chứng minh về một đẳng thức đã biết là luôn đúng.

* Cách 3: Biến đổi một đẳng thức đã biết là luôn đúng thành đẳng thức cần chứng minh.

b. Ví dụ minh họa:

Ví dụ 1: Chứng minh rằng:a. sin4x+cos4x= 14cos4x+34b. cos3x.sin3x+sin3x.cos3x=34sin4x

Lời giải:

a. (Áp dụng công thức hạ bậc) Ta có:

VT=sin4x+cos4x

=(sin2x+cos2x)2−2sin2xcos2x

=1−12sin22x=1−12.1−cos4x2

=34+14cos4x=VP

Suy ra đpcm.

b. (Áp dụng công thức góc nhân ba) Ta có:

VT= 14cos3x3sinx−sin3x+ 14sin3x3cosx+cos3x

 =34sinx.cos3x+cosx.sin3x=34sin4x=VP

Suy ra đpcm.

Ví dụ 2: Cho tam giác ABC. Chứng minh rằng:

sin3B2cosA+C2+cos3B2sinA+C2−cos(A+C)sinB.tanB=2

Lời giải:

Do tam giác ABC có A+B+C=1800, suy ra A+C=1800−B

Do đó, ta có:

VT=sin3B2cos1800−B2+cos3B2sin1800−B2−cos1800−BsinB.tanB

=sin3B2sinB2+cos3B2cosB2−−cosBsinB.tanB

=sin2B2+cos2B2+1=2=VP

Suy ra đpcm.

Dạng 3.3: Thu gọn biểu thức lượng giác

a. Phương pháp giải:

Sử dụng công thức lượng giác (công thức cộng, công thức nhân đôi, công thức hạ bậc, công thức biến đổi tổng thành tích, công thức biến đổi tích thành tổng) và các giá trị lượng giác của các góc liên quan đặc biệt để đưa biểu thức ban đầu trở nên đơn giản, ngắn gọn hơn.

b. Ví dụ minh họa:

Ví dụ 1: Rút gọn biểu thức:

a. A=cos10x+2cos24x+6cos3x.cosx−cosx−8cosx.cos33x

b. B=sin3x+cos2x−sinxcosx+sin2x−cos3xsin2x≠0;2sinx+1≠0

Hướng dẫn:​

a. Ta có:

A=cos10x+(1+cos8x)−cosx−2(4cos33x−3cos3x)cosx

=(cos10x+cos8x)+1−cosx−2cos9x.cosx

=2cos9x.cosx+1−cosx−2cos9x.cosx=1−cosx

b. Ta có:

B=sin3x+cos2x−sinxcosx+sin2x−cos3x

=2cos2xsinx+cos2x−2sin2xsin(−x)+sin2x

=2cos2xsinx+cos2x2sin2xsinx+sin2x

=cos2x(1+2sinx)sin2x(1+2sinx)=cot2x

Ví dụ 2: Rút gọn biểu thức: C=sin2x+2sina-x.sinx.cosa+sin2a-x.

Lời giải:

C=sin2x+2sina-x.sinx.cosa+sin2a-x

=sin2x+sina−x2sinxcosa+sina−x

=sin2x+sina−x2sinxcosa+sinacosx−cosasinx

=sin2x+sina−xsinxcosa+sinacosx

=sin2x+sina−xsina+x=sin2x+12cos2x−cos2a

=sin2x+121−2sin2x−(1−2sin2a)

=sin2x+sin2a−sin2x=sin2a

Dạng 3.4: Chứng minh biểu thức không phụ thuộc vào biến

a. Phương pháp giải:

Chứng minh biểu thức không phụ thuộc vào biến tức là sau khi rút gọn biểu thức ta được kết quả không chứa biến. Do đó, để giải dạng toán này, ta sử dụng công thức lượng giác (công thức cộng, công thức nhân đôi, công thức biến đổi tổng thành tích, công thức biến đổi tích thành tổng) và các giá trị lượng giác của các góc liên quan đặc biệt để đưa biểu thức ban đầu trở nên đơn giản, ngắn gọn hơn. Nếu biểu thức sau khi thu gọn không chứa biến, ta suy ra điều phải chứng minh.

b. Ví dụ minh họa:

Ví dụ 1: Chứng minh biểu thức sau không phụ thuộc vào x:

A=cos2x+cos2π3+x+cos2π3−x

Lời giải:

Ta có:

A=cos2x+cos2π3+x+cos2π3−x

=cos2x+12cosx−32sinx2+12cosx+32sinx2

= cos2x+14cos2x−32cosxsinx+34sin2x+14cos2x+32cosxsinx+34sin2x

=32cos2x+32sin2x

=32cos2x+sin2x

=32

Vậy biểu thức đã cho không phụ thuộc vào x.

Ví dụ 2: Chứng minh biểu thức sau không phụ thuộc vào x:

C=2sin4x+cos4x+sin2xcos2x2-sin8x+cos8x

Lời giải:

Ta có:

C=2sin4x+cos4x+sin2xcos2x2-sin8x+cos8x

=2sin2x+cos2x2−sin2xcos2x2-sin4x+cos4x2−2sin4xcos4x

=21−sin2xcos2x2-sin2x+cos2x2−2sin2xcos2x2+2sin4xcos4x

=21−sin2xcos2x2-1−2sin2xcos2x2+2sin4xcos4x

=21−2sin2xcos2x+sin4xcos4x-1−4sin2xcos2x+4sin4xcos4x+2sin4xcos4x

= 2 – 4sin2x cos2x + 2sin4x cos4x – 1 + 4sin2x cos2x – 4sin4x cos4x + 2sin4x cos4x

=1.

Vậy biểu thức đã cho không phụ thuộc vào x.

Dạng 3.5: Tính giá trị biểu thức

a. Phương pháp giải:

Sử dụng hệ thức cơ bản, các công thức lượng giác (công thức cộng, công thức nhân đôi, công thức hạ bậc, công thức biến đổi tổng thành tích, công thức biến đổi tích thành tổng) và các giá trị lượng giác của các góc liên quan đặc biệt.

b. Ví dụ minh họa:

Ví dụ 1: Tính giá trị biểu thức: A=cos10°.cos30°.cos50°.cos70°.

Lời giải:

Ta có:

A=cos10°.cos30°.cos50°.cos70°

=cos10°.cos30°.12cos120o+cos20o

=cos10o.32.12−12+cos20o

=34−cos10o2+cos10ocos20o

=34−cos10°2+cos30°+cos10°2

=34.cos30°2

=34.34=316

Ví dụ 2: Cho cos2α=23. Tính giá trị của biểu thức P=cosα.cos3α.

Lời giải:

Ta có:

P=cosα.cos3α=12cos2α+cos4α

=12cos2α+2cos22α−1

=122cos22α+cos2α−1

=122.232+23−1=518

3. Bài tập tự luyện

a. Tự luận

Câu 1: Cho x+y+z=π, chứng minh rằng: tanx + tany + tanz = tanx . tany . tanz.

Lời giải:

Từ giả thiết, ta có:

x+y+z=π⇔x+y=π−z

⇒tanx+y=tanπ−z

⇔ tanx+tany1−tanx.tany=−tanz

⇔tanx+tany=−tanz+tanx.tany.tanz

⇔tanx+tany+tanz=tanx.tany.tanz

Suy ra đpcm.

Câu 2: Cho sinx+siny=2sinx + y, với x+y≠kπ, k∈ℤ. Chứng minh rằng: tanx2.tany2 = 13.

Lời giải:

Từ giả thiết, ta có:

sinx+siny=2sinx+y⇔2sinx+y2.cosx−y2 =4sinx+y2.cosx+y2

⇔cosx−y2=2cosx+y2 (do x+y≠kπ,k∈ℤ)

⇔cosx2.cosy2 +sinx2.siny2 =2cosx2.cosy2 −sinx2.siny2

⇔3sinx2.siny2=cosx2.cosy2 ⇔tanx2.tany2 = 13

Suy ra đpcm.

Câu 3: Cho sinα=13 với 0<α<π2. Tính giá trị của cosα+π3.

Lời giải:

Ta có: sin2α+cos2α=1⇒cos2α=23⇒cosα=63 (vì 0<α<π2 nên cosα>0).

Ta có: cosα+π3=12cosα−32sinα

=12⋅63−32⋅13=16−12=2−626

Câu 4: Tính giá trị biểu thức M=cos-53°.sin-337°+sin307°.sin113°.

Lời giải:

M=cos-53°.sin-337°+sin307°.sin113°

=cos-53°.sin23°-360°+sin−53°+360°.sin90°+23°

=cos-53°.sin23°+sin−53°.cos23°

=sin23°−53°=−sin30°=−12

Câu 5: Cho số thực α thỏa mãn sinα=14. Tính sin4α+2sin2αcosα.

Lời giải:

Ta có: sin4α+2sin2αcosα

=2sin2αcos2α+2sin2αcosα

=2sin2αcos2α+1cosα

=4sinαcosα1−2sin2α+1cosα

=4sinαcos2α(2−2sin2α)

=4sinα1−sin2α2−2sin2α

=81−sin2α2sinα

=81−1162.14=225128

Câu 6: Rút gọn biểu thức P=cosa+2cos3a+cos5asina+2sin3a+sin5a.

Lời giải:

P=cosa+2cos3a+cos5asina+2sin3a+sin5a

=2cos3acos2a+2cos3a2sin3acos2a+2sin3a

=2cos3acos2a+12sin3acos2a+1

=cos3asin3a=cot3a

Câu 7: Chứng minh biểu thức A=1−tan2x24tan2x−14sin2xcos2x không phụ thuộc vào x.

Lời giải:

Ta có: A=1−tan2x24tan2x−14sin2xcos2x

=1−tan2x24tan2x−14tan2x⋅1cos2x2

=1−tan2x24tan2x−1+tan2x24tan2x

=1−tan2x2−1+tan2x24tan2x

=−4tan2x4tan2x=−1

Vậy biểu thức không phụ thuộc vào biến.

Câu 8: Rút gọn biểu thức A=2cos22α+3sin4α−12sin22α+3sin4α−1 .

Lời giải:

Ta có:

A=2cos22α+3sin4α−12sin22α+3sin4α−1

=cos4α+3sin4α3sin4α−cos4α

=12cos4α+32sin4α32sin4α−12cos4α

=sin4α+30°sin4α−30°

Câu 9: Biến đổi biểu thức sinα−1 thành tích các biểu thức.

Lời giải:

Ta có:

sinα−1=sinα−sinπ2

=2cosα+π22sinα−π22

=2cosα2+π4sinα2−π4.

Câu 10: Biết sinβ=45, 0<β<π2 và α≠kπ. Chứng minh biểu thức: A=3sinα+β−4cosα+β3sinα không phụ thuộc vào α.

Lời giải:

Ta có 0<β<π2sinβ=45⇒cosβ=35

A=3sinα+β−4cosα+β3sinα

=3(sinαcosβ+cosαsinβ)−4(cosαcosβ−sinαsinβ)3sinα

=335sinα+45cosα−435cosα−45sinα3sinα

=5sinα3sinα=53

Vậy biểu thức không phụ thuộc vào biến α.

b. Trắc nghiệm

Câu 1: Kết quả nào sau đây sai?

A. sinx+cosx=2sinx+π4

B. sinx−cosx=−2cosx+π4

C. sin2x+cos2x=2sin2x−π4

D. sin2x+cos2x=2cos2x−π4

Câu 2: Trong các công thức sau, công thức nào sai?

A. cot2x=cot2x−12cotx

B. tan2x=2tanx1+tan2x

C. cos3x=4cos3x−3cosx

D. sin3x=3sinx−4sin3x

Câu 3: Nếu sinx+cosx=12 thì sin2x bằng

A. 34.

B. 38.

C. 22.

D. −34.

Câu 4: Cho hai góc nhọn a và b. Biết cosa=13, cosb=14. Giá trị cosa+b.cosa−b bằng:

A. −113144.

B. −115144.

C. −117144.

D. −119144.

Câu 5: Cho cosx=0. Tính A=sin2x−π6+sin2x+π6.

A. 32.

B. 2.

C. 1.

D. 14.

Đáp án:

Câu 1

Câu 2

Câu 3

Câu 4

Câu 5

C

B

D

D

A

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Xem thêm phương pháp giải các dạng bài tập Toán lớp 10 hay, chi tiết khác:

  • Giá trị lượng giác của một góc bất kì từ 0 độ đến 180 độ và cách giải
  • Tích vô hướng của hai vectơ và cách giải bài tập
  • Hệ thức lượng trong tam giác và cách giải bài tập
  • Hệ trục tọa độ trong mặt phẳng và cách giải bài tập
  • Phương trình đường thẳng và cách giải bài tập

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
Previous Post

Chấn an hay trấn an đúng chính tả?

Next Post

Ráng Lên hay Rán Lên đúng chính tả?

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Đáp án đề thi vào 10 môn toán Quảng Ninh 2024-2025

by Tranducdoan
31/12/2025
0
0

Đề thi tuyển sinh môn Toán vào 10 Quảng Ninh năm học 2024-2025 chính thức được Đọc tài liệu cập...

by Tranducdoan
31/12/2025
0
0

Để hỗ trợ cho thí sinh và quý phụ huynh, Đại học Đông Á sẽ liên tục cập nhật đề...

Sách giáo khoa Toán 11 (tập 1) (Chân Trời Sáng Tạo)

by Tranducdoan
31/12/2025
0
0

Sách giáo khoa Toán 11 (tập 1) (Chân Trời Sáng Tạo) được biên soạn bởi các tác giả: Trần Nam...

Toán 11 Chân trời sáng tạo Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

by Tranducdoan
31/12/2025
0
0

Với giải bài tập Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian sách Chân trời...

Load More
Next Post

Ráng Lên hay Rán Lên đúng chính tả?

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Đáp án đề thi vào 10 môn toán Quảng Ninh 2024-2025

31/12/2025

31/12/2025

Kiến thức trọng tâm môn Toán 12

31/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.