Bài viết Cách giải phương trình lượng giác cơ bản với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình lượng giác cơ bản.
Cách giải phương trình lượng giác cơ bản
(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST
A. Phương pháp giải & Ví dụ
– Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π – arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:
– Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:
– Phương trình tanx = a (3)
Điều kiện:
Nếu α thỏa mãn điều kiện và tanα = a thì ta viết α = arctan a.
Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
– Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z
Ví dụ minh họa
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Bài 2: Giải các phương trình lượng giác sau:
a) cos2 x – sin2x =0.
b) 2sin(2x – 40º) = √3
Bài 3: Giải các phương trình lượng giác sau:
Đáp án và hướng dẫn giải
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sinπ/6
b)
c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x
Bài 2: Giải các phương trình lượng giác sau:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx – 2 sinx )=0
b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2
Bài 3: Giải các phương trình lượng giác sau:
a) sin(2x+1)=cos(3x+2)
b)
⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)
B. Bài tập vận dụng
Bài 1: Giải các phương trình sau
a) cos(3x + π) = 0
b) cos (π/2 – x) = sin2x
Lời giải:
Bài 2: Giải các phương trình sau
a) sinx.cosx = 1
b) cos2 x – sin2 x + 1 = 0
Lời giải:
Bài 3: Giải các phương trình sau
a) cos2 x – 3cosx + 2 = 0
b) 1/(cos2 x) – 2 = 0.
Lời giải:
Bài 4: Giải các phương trình sau: (√3-1)sinx = 2sin2x.
Lời giải:
Bài 5: Giải các phương trình sau: (√3-1)sinx + (√3+1)cosx = 2√2 sin2x
Lời giải:
C. Bài tập tự luyện
Bài 1. Giải các phương trình lượng giác sau:
a) cos2 x – sin2x = 0.
b) 2sin(2x – 40º) = 3.
Bài 2. Giải các phương trình lượng giác sau:
a) sinx = sinπ6.
b) cotx = tan2x.
c) tanx = 1.
Bài 3. Giải các phương trình lượng giác sau:
a) 3−1sinx = 2sin2x.
b) 3−1sinx + 3−1cosx = 22sin2x.
Bài 4. Giải các phương trình lượng giác sau:
a) sin(2x + 1) = cos(3x + 2).
b) sinx.cosx = 1.
c) cos2x – sin2x + 1 = 0.
d) 1cos2x−2=0.
Bài 5. Giải các phương trình lượng giác sau:
a) 23cos2x + 6sinxcosx = 3 + 3.
b) sinx + cosx – 2sinx.cosx + 1 = 0.
c) 3cos2x + 3cot2x + 4(tanx + cotx) – 1 = 0.
d) 6sin2x + 14sinxcosx – 4(1 + cos2x) = 6.
Bài 6. Giải phương trình: 2sin(x + 30°) + 3 = 0.
Bài 7. Giải phương trình: sinx = −32
Bài 8. Giải phương trình: sin2x – 3sinx + 2 = 0.
Bài 9. Giải phương trình: 2sin2x – sinx = 0.
Bài 10. Giải các phương trình sau:
a) 2sin2x + 2sin4x = 0;
b) sin2x + sin2x – 2cos2x + 5cos2x = 2.
(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Trắc nghiệm giải phương trình lượng giác cơ bản
- Dạng 2: Phương trình bậc hai với một hàm số lượng giác
- Trắc nghiệm phương trình bậc hai với một hàm số lượng giác
- Dạng 3: Phương trình bậc nhất theo sinx và cosx
- Trắc nghiệm phương trình bậc nhất theo sinx và cosx
- Dạng 4: Phương trình đẳng cấp bậc 2, bậc 3 lượng giác
- Trắc nghiệm phương trình đẳng cấp bậc 2, bậc 3 lượng giác





