Trang chủ / Lớp 11 / Toán Học / Bài 1.32 trang 41

📝 Bài 1.32 trang 41

📚 👁️ 30 lượt xem 📅 06/01/2026
Biết \(\sin \alpha = - \frac{1}{6}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\), tính: Đề bài Biết \(\sin \alpha  =  - \frac{1}{6}\) và \(\pi  < \alpha  < \frac{{3\pi }}{2}\), tính: a) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right);\) b) \(\cos 2\alpha ;\) c) \(\tan \left( {\frac{\pi }{4} - \alpha } \right);\) d) \(\cos \left( {\frac{\alpha }{2}} \right).\) Phương pháp giải - Xem chi tiết Áp dụng các hệ thức cơ bản của góc lượng giác để tính \(\cos \alpha ,\tan \alpha \). Áp dụng các...

Biết \(\sin \alpha = - \frac{1}{6}\) và \(\pi < \alpha < \frac{{3\pi }}{2}\), tính:

Đề bài

Biết \(\sin \alpha  =  - \frac{1}{6}\) và \(\pi  < \alpha  < \frac{{3\pi }}{2}\), tính:

a) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right);\)

b) \(\cos 2\alpha ;\)

c) \(\tan \left( {\frac{\pi }{4} - \alpha } \right);\)

d) \(\cos \left( {\frac{\alpha }{2}} \right).\)

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức cơ bản của góc lượng giác để tính \(\cos \alpha ,\tan \alpha \). Áp dụng các công thức nhân đôi, công thức cộng để tính các giá trị lượng giác bài yêu cầu.

Lời giải chi tiết

\(\begin{array}{l}{\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{{35}}{{36}}\\ \Rightarrow \cos \alpha  =  - \frac{{\sqrt {35} }}{6}\\ \Rightarrow \tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{{\sqrt {35} }}\end{array}\)

a) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} =  - \frac{1}{6}.\frac{1}{2} - \left( { - \frac{{\sqrt {35} }}{6}} \right).\frac{{\sqrt 3 }}{2} = \frac{{\sqrt {105}  - 1}}{{12}}\)

b) \(\cos 2\alpha  = {\cos ^2}\alpha  - {\sin ^2}\alpha  = \frac{{35}}{{36}} - {\left( { - \frac{1}{6}} \right)^2} = \frac{{17}}{{18}}\)

c) \(\tan \left( {\frac{\pi }{4} - \alpha } \right) = \frac{{\tan \frac{\pi }{4} - \tan \alpha }}{{1 + \tan \frac{\pi }{4}\tan \alpha }} = \frac{{1 - \frac{1}{{\sqrt {35} }}}}{{1 + \frac{1}{{\sqrt {35} }}}} = \frac{{18 - \sqrt {35} }}{{17}}\)

d) \({\cos ^2}\left( {\frac{\alpha }{2}} \right) = \frac{{\cos \alpha  + 1}}{2} = \frac{{ - \frac{{\sqrt {35} }}{6} + 1}}{2} = \frac{{6 - \sqrt {35} }}{{12}}\)

Mà \(\frac{\pi }{2} < \frac{\alpha }{2} < \frac{{3\pi }}{4}\)\( \Rightarrow \cos \left( {\frac{\alpha }{2}} \right) =  - \sqrt {\frac{{6 - \sqrt {35} }}{{12}}} \)

📚 Xem toàn bộ khóa học