Trang chủ / Lớp 8 / Toán Học / Bài 13 trang 12 sách bài tập toán 8 - Cánh diều

📝 Bài 13 trang 12 sách bài tập toán 8 - Cánh diều

📚 👁️ 32 lượt xem 📅 05/01/2026
Cho hai đơn thức: (A = - 123{x^{n + 1}}{y^{10}}{z^{n + 2}};B = 1,2{x^5}{y^n}{z^{n + 1}}) với (n) là số tự nhiên. Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Cho hai đơn thức: \(A =  - 123{x^{n + 1}}{y^{10}}{z^{n + 2}};B = 1,2{x^5}{y^n}{z^{n + 1}}\) với \(n\) là số tự nhiên. Phương pháp giải - Xem chi tiết Đơn thức \(A\) chia hết cho đơn thức \(B\) \(\left( {B \ne 0} \right)\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ không...

Cho hai đơn thức: (A = - 123{x^{n + 1}}{y^{10}}{z^{n + 2}};B = 1,2{x^5}{y^n}{z^{n + 1}}) với (n) là số tự nhiên.

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hai đơn thức: \(A =  - 123{x^{n + 1}}{y^{10}}{z^{n + 2}};B = 1,2{x^5}{y^n}{z^{n + 1}}\) với \(n\) là số tự nhiên.

Phương pháp giải - Xem chi tiết

Đơn thức \(A\) chia hết cho đơn thức \(B\) \(\left( {B \ne 0} \right)\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ không lớn hơn số mũ của nó trong \(A\).

Lời giải chi tiết

a) Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ không lớn hơn số mũ của nó trong \(A\).

Suy ra \(5 \le n + 1;n \le 10;n + 1 \le n + 2\) hay \(4 \le n \le 10\).

Vậy \(n \in \left\{ {4;5;6;7;8;9;10} \right\}\) thì đơn thức \(A\) chia hết cho đơn thức \(B\).

b) \(P = A:B = \left( { - 123{x^{n + 1}}{y^{10}}{z^{n + 2}}} \right):\left( {1,2{x^5}{y^n}{z^{n + 1}}} \right) =  - 110{x^{n - 4}}{y^{10 - n}}z\)

c) Giá trị của đa thức \(P\) tại \(n = 9;x = 2;y =  - 1;z = 5,8\) là:

\( - {110.2^{9 - 4}}.{\left( { - 1} \right)^{10}}.5,8 = 20416\)

📚 Xem toàn bộ khóa học