Trang chủ / Lớp 8 / Toán Học / Bài 16 trang 40 sách bài tập toán 8 - Cánh diều

📝 Bài 16 trang 40 sách bài tập toán 8 - Cánh diều

📚 👁️ 28 lượt xem 📅 05/01/2026
Tính một cách hợp lí: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Tính một cách hợp lí: a) \(\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\) b) \(\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\) c) \(\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x -...

Tính một cách hợp lí:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Tính một cách hợp lí:

a) \(\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\)

b) \(\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\)

c) \(\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\)

Phương pháp giải - Xem chi tiết

Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính.

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\frac{{39x + 7}}{{x - 2020}}.\frac{{9x - 20}}{{x + 2022}} - \frac{{39x + 7}}{{x - 2020}}.\frac{{8x - 2042}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}.\left( {\frac{{9x - 20}}{{x + 2022}} - \frac{{8x - 2042}}{{x + 2022}}} \right)\\ = \frac{{39 + 7}}{{x - 2020}}.\frac{{x + 2022}}{{x + 2022}}\\ = \frac{{39 + 7}}{{x - 2020}}\end{array}\)

b) Ta có:

\(\begin{array}{l}\frac{{{x^2} - 81}}{{{x^2} + 101}}.\left( {\frac{{{x^2} + 101}}{{x - 9}} + \frac{{{x^2} + 101}}{{x + 9}}} \right)\\ = \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x - 9}} + \frac{{\left( {x - 9} \right)\left( {x + 9} \right)}}{{{x^2} + 101}}.\frac{{{x^2} + 101}}{{x + 9}}\\ = x + 9 + x - 9 = 2x\end{array}\)

c) Ta có:

\(\begin{array}{l}\frac{{{x^2} - 1}}{{x + 100}}.\frac{{2x}}{{x + 2}} + \frac{{1 - {x^2}}}{{x + 100}}.\frac{{x - 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 100}}\left( {\frac{{2x}}{{x + 2}} - \frac{{x - 100}}{{x + 2}}} \right)\\ = \frac{{{x^2} - 1}}{{x + 100}}.\frac{{x + 100}}{{x + 2}}\\ = \frac{{{x^2} - 1}}{{x + 2}}\end{array}\)

📚 Xem toàn bộ khóa học