Trang chủ / Lớp 8 / Toán Học / Bài 17 trang 40 sách bài tập toán 8 - Cánh diều

📝 Bài 17 trang 40 sách bài tập toán 8 - Cánh diều

📚 👁️ 25 lượt xem 📅 05/01/2026
Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\) b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\) c) \(P = \left( {\frac{{{x^3} +...

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến:

a) \(M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\)

b) \(N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\)

c) \(P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\)

Phương pháp giải - Xem chi tiết

Rút gọn các biểu thức để cho giá trị của biểu thức là một hằng số thì giá trị của biểu thức sẽ không phụ thuộc vào giá trị của biến.

Lời giải chi tiết

a) Rút gọn biểu thức \(M\) ta có:

\(\begin{array}{l}M = \frac{{x - 2y}}{{3x + 6y}}:\frac{{{x^2} - 4{y^2}}}{{{x^2} + 4xy + 4{y^2}}}\\ = \frac{{x - 2y}}{{3x + 6y}}.\frac{{{x^2} + 4xy + 4{y^2}}}{{{x^2} - 4{y^2}}}\\ = \frac{{\left( {x - 2y} \right).{{\left( {x + 2y} \right)}^2}}}{{3\left( {x + 2y} \right).\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{1}{3}\end{array}\)

Ta thấy \(M = \frac{1}{3}\) vậy giá trị của biểu thức \(M\) không phụ thuộc vào giá trị của biến.

b) Rút gọn biểu thức \(N\) ta có:

\(\begin{array}{l}N = \left( {x - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{1}{y} + \frac{2}{{x - y}}} \right)\\ = \left( {\frac{{x\left( {x + y} \right)}}{{x + y}} - \frac{{{x^2} + {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y}}{{y\left( {x - y} \right)}} + \frac{{2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{{x^2} + xy - {x^2} - {y^2}}}{{x + y}}} \right)\left( {\frac{{x - y + 2y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{xy - {y^2}}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = \left( {\frac{{y\left( {x - y} \right)}}{{x + y}}} \right)\left( {\frac{{x + y}}{{y\left( {x - y} \right)}}} \right)\\ = 1\end{array}\)

Ta thấy \(N = 1\) vậy giá trị của biểu thức \(N\) không phụ thuộc vào giá trị của biến.

c) Rút gọn biểu thức \(P\) ta có:

\(\begin{array}{l}P = \left( {\frac{{{x^3} + {y^3}}}{{x + y}} - xy} \right):\left( {{x^2} - {y^2}} \right) + \frac{{2y}}{{x + y}}\\ = \left( {\frac{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}}{{x + y}} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \left( {{x^2} - xy + {y^2} - xy} \right):\left( {x - y} \right)\left( {x + y} \right) + \frac{{2y}}{{x + y}}\\ = \frac{{{x^2} + {y^2} - 2xy}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{{{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} + \frac{{2y}}{{x + y}}\\ = \frac{{x - y}}{{x + y}} + \frac{{2y}}{{x + y}}\\ = \frac{{x + y}}{{x + y}} = 1\end{array}\)

Ta thấy \(P = 1\) vậy giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến.

📚 Xem toàn bộ khóa học