Trang chủ / Lớp 11 / Toán Học / Bài 18 trang 75 sách bài tập toán 11 - Cánh diều

📝 Bài 18 trang 75 sách bài tập toán 11 - Cánh diều

📚 👁️ 30 lượt xem 📅 06/01/2026
Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng: a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)                      b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)                           c) \(\mathop {\lim }\limits_{x \to 3} \sqrt...

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:

a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)                     

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)                          

c) \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)}  = 2\)

Phương pháp giải - Xem chi tiết

Sử dụng định lí về các phép toán giới hạn hữu hạn của hàm số.

Lời giải chi tiết

Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)

 \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).

a) Ta có \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 3} 3.\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 3.4 = 12\).

b) Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = \frac{{\mathop {\lim }\limits_{x \to 3} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 3} 4}} = \frac{4}{4} = 1\).

c) Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4 \ge 0\) nên \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)}  = \sqrt 4  = 2\)

📚 Xem toàn bộ khóa học