Trang chủ / Lớp 11 / Toán Học / Bài 2.9 trang 52
Bài học chính: ← Cấp số cộng

📝 Bài 2.9 trang 52

📚 👁️ 32 lượt xem 📅 06/01/2026
Nhà hát bậc dốc hình tròn đã được xây dựng từ thời La Mã. Các dãy chỗ ngồi được xếp theo hình cung tròn mà số chỗ ngồi tăng dần từ trong ra ngoài. Đề bài Nhà hát bậc dốc hình tròn đã được xây dựng từ thời La Mã. Các dãy chỗ ngồi được xếp theo hình cung tròn mà số chỗ ngồi tăng dần từ trong ra ngoài. Một nhà hát như thế có số chỗ ngồi ở các dãy tính từ trong ra ngoài lập thành cấp số cộng 12, 16, 20,... Số chỗ ngồi của dãy cuối cùng là 72. Tính tổng số chỗ ngồi trong nhà hát. Phương pháp giải -...

Nhà hát bậc dốc hình tròn đã được xây dựng từ thời La Mã. Các dãy chỗ ngồi được xếp theo hình cung tròn mà số chỗ ngồi tăng dần từ trong ra ngoài.

Đề bài

Nhà hát bậc dốc hình tròn đã được xây dựng từ thời La Mã. Các dãy chỗ ngồi được xếp theo hình cung tròn mà số chỗ ngồi tăng dần từ trong ra ngoài. Một nhà hát như thế có số chỗ ngồi ở các dãy tính từ trong ra ngoài lập thành cấp số cộng 12, 16, 20,... Số chỗ ngồi của dãy cuối cùng là 72. Tính tổng số chỗ ngồi trong nhà hát.

Phương pháp giải - Xem chi tiết

Từ đầu bài, xác định \({u_1},d,{u_n}\).

Áp dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm n.

Áp dụng công thức \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) để tính tổng.

Lời giải chi tiết

Gọi số dãy chỗ ngồi là n.

Một nhà hát như thế có số chỗ ngồi ở các dãy tính từ trong ra ngoài lập thành cấp số cộng 12, 16, 20,... Số chỗ ngồi của dãy cuối cùng là 72\( \Rightarrow {u_1} = 12,{u_2} = 16,{u_3} = 20,{u_n} = 72\)

\( \Rightarrow d = 4\)

Ta có:

\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d\\ \Leftrightarrow 72 = 12 + \left( {n - 1} \right).4 \Leftrightarrow n - 1 = 15 \Leftrightarrow n = 16\end{array}\)

Vậy tổng số chỗ ngồi của nhà hát là \(S = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2} = \frac{{16\left( {12 + 72} \right)}}{2} = 672\) (chỗ ngồi).

📚 Xem toàn bộ khóa học