Trang chủ / Lớp 9 / Toán Học / Bài 2 trang 91

📝 Bài 2 trang 91

📚 👁️ 32 lượt xem 📅 06/01/2026
Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mặt bạn Hoàng đặt tại vị trí (C) cách mặt đất một khoảng (CB = DH = 1,64m) và cách cây một khoảng (CD = BH = 6m). Tính chiều cao (AH) của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn (ACD) bằng (38^circ ) minh họa ở Hình 36. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Để ước lượng chiều cao của một cây...

Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mặt bạn Hoàng đặt tại vị trí (C) cách mặt đất một khoảng (CB = DH = 1,64m) và cách cây một khoảng (CD = BH = 6m). Tính chiều cao (AH) của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn (ACD) bằng (38^circ ) minh họa ở Hình 36.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mặt bạn Hoàng đặt tại vị trí \(C\) cách mặt đất một khoảng \(CB = DH = 1,64m\) và cách cây một khoảng \(CD = BH = 6m\). Tính chiều cao \(AH\) của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn \(ACD\) bằng \(38^\circ \) minh họa ở Hình 36. 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

Xét tam giác \(ACD\) vuông tại \(D\), ta có:

\(AD = CD.\tan 38^\circ = 6.\tan 38^\circ \approx 4,69\left( m \right)\).

Vậy chiều cao \(AH\) của cây khoảng: \(AH = AD + DH \approx 4,69 + 1,64 \approx 6,33\left( m \right)\).

📚 Xem toàn bộ khóa học