Cho tam giác ABC. Chứng minh rằng:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho tam giác \(ABC.\) Chứng minh rằng:
a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)
Phương pháp giải - Xem chi tiết
a) sử dụng định lý sin và công thức tính diện tích tam giác.
b) sử dụng tính chất đường trung tuyến của tam giác.
Lời giải chi tiết
a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)
\(\begin{array}{l}VT = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}} = \frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\frac{{2S}}{{bc}}}} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{{\frac{{2S}}{{ac}}}} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{{\frac{{2S}}{{ab}}}}\\ = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}} = VP\,\,\left( {dpcm} \right)\end{array}\)
b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)
\(\begin{array}{l}VT = \left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right) + \left( {\frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}} \right) + \left( {\frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}} \right)\\ = \frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{2} - \frac{{{a^2} + {b^2} + {c^2}}}{4}\\ = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right) = VP\,\,\left( {dpcm} \right).\end{array}\)