Tính các góc của hình thang ABCD (AB,CD là hai đáy) biết (widehat A = 2widehat D), (widehat B = widehat C + 40^circ ).
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Tính các góc của hình thang ABCD (AB,CD là hai đáy) biết \(\widehat A = 2\widehat D\), \(\widehat B = \widehat C + 40^\circ \).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hình thang cân và áp dụng định lí tổng các góc trong một tứ giác.
Lời giải chi tiết
Trong hình thang ABCD có: \(\widehat A\) và \(\widehat D\) là hai góc bù nhau nên ta có \(\widehat A + \widehat D = 180^\circ \).
Mà \(\widehat A = 2\widehat D\) nên \(2\widehat D + \widehat D = 180^\circ \), suy ra \(\widehat D = 60^\circ \).
Do đó \(\widehat A = 2\widehat D = 2.60^\circ = 120^\circ \).
Tương tự \(\widehat B\) và \(\widehat C\) là hai góc bù nhau nên ta có \(\widehat B + \widehat C = 180^\circ \).
Mà \(\widehat B = \widehat C + 40^\circ \) nên \(\widehat C + 40^\circ + \widehat C = 180^\circ \) hay \(2\widehat C = 140^\circ \), suy ra \(\widehat C = 70^\circ \).
Do đó \(\widehat B = \widehat C + 40^\circ = 70^\circ + 40^\circ = 110^\circ \).
Vậy hình thang ABCD có \(\widehat A = 120^\circ \); \(\widehat B = 110^\circ \); \(\widehat C = 70^\circ \); \(\widehat D = 60^\circ \).