Trang chủ / Lớp 10 / Toán Học / Bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📝 Bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📚 👁️ 1 lượt xem 📅 06/01/2026
Cho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có \(\overrightarrow {OA}  + \overrightarrow {OB}  +...

Cho tứ giác ABCD. Gọi M,\,\,N theo thứ tự là trung điểm của cạnh AB,\,\,CD và gọi I là trung điểm của MN. Chứng minh rằng với điểm O bất kì đều có

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho tứ giác \(ABCD.\) Gọi \(M,\,\,N\) theo thứ tự là trung điểm của cạnh \(AB,\,\,CD\) và gọi \(I\) là trung điểm của \(MN.\) Chứng minh rằng với điểm \(O\) bất kì đều có

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {OI} .\)

Phương pháp giải - Xem chi tiết

-  Tính chất trun điểm: \(\overrightarrow {IA}  + \overrightarrow {IB}  = 2\overrightarrow {IM} \)

-  Chèn điểm I vào giữa các vectơ \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} \)

Lời giải chi tiết

Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \left( {\overrightarrow {OI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {OI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {OI}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {OI}  + \overrightarrow {ID} } \right)\)

\(\begin{array}{l} = 4\overrightarrow {OI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {IC}  + \overrightarrow {ID} } \right)\\ = 4\overrightarrow {OI}  + 2\overrightarrow {IM}  + 2\overrightarrow {IN} \\ = 4\overrightarrow {OI} \end{array}\)

📚 Xem toàn bộ khóa học