I. Hai mặt phẳng song song trong không gian I. Hai mặt phẳng song song trong không gian* Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm chung. *Lưu ý: \(\left\{ \begin{array}{l}\left( \alpha \right)//\left( \beta \right)\\d \subset \left( \alpha \right)\end{array} \right. \Rightarrow d//\left( \beta \right)\).II. Tính chất của hai mặt phẳng song song trong không gian Điều kiện để hai mặt phẳng song song: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng cắt nhau...
Xét hai bậc thang liên tiếp của một cầu thang ở Hình 4.66. Xem hai bề mặt bậc thang là hình ảnh của hai mặt phẳng (P1), (P2). Hãy nhận xét về số điểm chung của mặt phẳng (P1) và (P2). Hoạt động 1 Xét hai bậc thang liên tiếp của một cầu thang ở Hình 4.66. Xem hai bề mặt bậc thang là hình ảnh của hai mặt phẳng (P1), (P2). Hãy nhận xét về số điểm chung của mặt phẳng (P1) và (P2). Phương pháp giải:Quan sát hình ảnh.Lời giải chi tiết:Mặt phẳng (P1) và (P2) không có điểm chung nào. Luyện tập 1 Khẳng...
Cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\). Biết rằng hai đường thẳng a và b nằm trong \(\left( \alpha \right)\) sao cho \(a\,{\rm{//}}\left( \beta \right)\) và \(b\,{\rm{//}}\left( \beta \right)\). Hoạt động 2 Cho hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\). Biết rằng hai đường thẳng a và b nằm trong \(\left( \alpha \right)\) sao cho \(a\,{\rm{//}}\left( \beta \right)\) và \(b\,{\rm{//}}\left( \beta \right)\). a) Vì sao \(\left( \alpha ...
Cho ba mặt phẳng dôi một song song (P), (Q), (R) cắt hai đường thẳng d, d' lần lượt tại A, B, C và A', B', C'. Gọi B1, là giao điểm của đường thẳng AC' và mặt phẳng (Q). Tìm mối liên hệ giữa các tỉ số \(\frac{{AB}}{{BC}}\) và \(\frac{{A{B_1}}}{{{B_1}C}}\); \(\frac{{A'}{B'}}{{B'}{C'}}\) và \(\frac{{A{B_1}}}{{{B_1}C}}\); \(\frac{{AB}}{{BC}}\) và \(\frac{{A'}{B'}}{{B'}{C'}}\). Hoạt động 5 Cho ba mặt phẳng dôi một song song (P), (Q), (R) cắt hai đường thẳng d, d' lần lượt tại A, B, C và A', B', C'....
Cho hai mặt phẳng song song \(\left( \alpha \right)\) và \(\left( {\alpha'}\right)\). Trên \(\left( \alpha \right)\), lấy tam giác ABC. Qua các đỉnh A, B, C, ta vẽ các đường thẳng song song với nhau và cắt \(\left( {\alpha '} \right)\) lần lượt tại A, B, C. Các tứ giác ABB′A′, BCC′B′, ACC′A′ là hình gì? Hãy nhận xét về hai tam giác ABC và A′B′C′. Hoạt động 6 Cho hai mặt phẳng song song \(\left( \alpha \right)\) và \(\left( {\alpha'}\right)\). Trên \(\left( \alpha \right)\), lấy tam giác ABC....
Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn là AD, AD = 2BC. Gọi I, K, L lần lượt là trung điểm của đoạn AD, SA, SD. Chứng minh rằng (SAB) // (ILC) và (SCD) // (BIK). Đề bài Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn là AD, AD = 2BC. Gọi I, K, L lần lượt là trung điểm của đoạn AD, SA, SD. Chứng minh rằng (SAB) // (ILC) và (SCD) // (BIK). Phương pháp giải - Xem chi tiết Nếu mặt phẳng (P) chứa 2 đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì...
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Đề bài Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. a) Chứng minh rằng (OMN) // (SBC). b) Gọi P, Q lần lượt là trung điểm của AB, ON. Chứng minh rằng PQ // (SBC). Phương pháp giải - Xem chi tiết a) Nếu mặt phẳng (P) chứa 2 đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q). b) Nếu (P)...
Sau khi gắn kệ treo tường bằng gỗ (Hình 4.87), bạn Nam chuẩn bị đặt đồ trang trí lên nhưng lại lo lắng kệ bị nghiêng, các đồ đạc sẽ bị rơi vỡ. Bạn Bình đề xuất với bạn Nam: Đề bài Sau khi gắn kệ treo tường bằng gỗ (Hình 4.87), bạn Nam chuẩn bị đặt đồ trang trí lên nhưng lại lo lắng kệ bị nghiêng, các đồ đạc sẽ bị rơi vỡ. Bạn Bình đề xuất với bạn Nam: "Chỉ cần dùng một viên bi đặt lên vài vị trí trên kệ, nếu viên bi đứng yên thì yên tâm, nếu viên bi lăn xuống thì phải chỉnh lại kệ". Xem mặt kệ...
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, M' lần lượt là trung điểm của các cạnh BC, B'C'. Đề bài Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, M' lần lượt là trung điểm của các cạnh BC, B'C'. a) Tìm giao điểm của mặt phẳng (AB'C') với đường thẳng A'M. b) Tìm giao tuyến d của hai mặt phẳng (AB'C') và (BA'C'). c) Tìm giao điểm G của đường thẳng d với mặt phẳng (AM'M). Chứng minh G là trọng tâm của tam giác AB'C'. Phương pháp giải - Xem chi tiết a) Cách tìm giao điểm của a và (P) + Tìm (Q)...
Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng: Đề bài Cho hình hộp ABCD.A'B'C'D'. Chứng minh rằng: a) Hai mặt phẳng (BDA') và (B'D'C) song song với nhau. b) Đường chéo AC' đi qua các trọng tâm G1 và G2 của hai tam giác BDA' và B'D'C. c) G1 và G2 chia đoạn AC' thành ba phần bằng nhau. Phương pháp giải - Xem chi tiết a) Nếu mặt phẳng (P) chứa 2 đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q). b) Trọng tâm là giao điểm của các đường trung tuyến. c) Khoảng...