Trang chủ / Lớp 7 / Toán Học / Bài 4 trang 20

📝 Bài 4 trang 20

📚 👁️ 31 lượt xem 📅 06/01/2026
Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của (a) : Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên... Đề bài Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của \(a\) : a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3}\) với \(a = \frac{8}{9};\) b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25\) với \(a = 0,25\); c) \({( - 0,125)^6}:\frac{{ - 1}}{8}\) với \(a =  - \frac{1}{8};\) d) \({\left[ {{{\left( {\frac{{ -...

Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của (a) :

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của \(a\) :

a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3}\) với \(a = \frac{8}{9};\)

b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25\) với \(a = 0,25\);

c) \({( - 0,125)^6}:\frac{{ - 1}}{8}\) với \(a =  - \frac{1}{8};\)

d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2}\) với \(a = \frac{{ - 3}}{2}\).

Phương pháp giải - Xem chi tiết

\(\begin{array}{l}{x^m}.{x^n} = {x^{m + n}}\left( {m,n \in \mathbb{N}} \right)\\{x^m}:{x^n} = {x^{m - n}}\left( {x \ne 0;m \ge n;\,m,n \in \mathbb{N}} \right)\\{\left( {{x^m}} \right)^n} = {x^{m.n}}\left( {m,n \in \mathbb{N}} \right)\end{array}\)

Lời giải chi tiết

a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} \) \(= {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} \) \(= {\left( {\frac{8}{9}} \right)^{3+1}}\) \(={\left( {\frac{8}{9}} \right)^4}\)

b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 \) \(= {\left( {0,25} \right)^7}.0,25 \) \(={\left( {0,25} \right)^{7+1}}\) \(= {\left( {0,25} \right)^8}\)

c) \({( - 0,125)^6}:\frac{{ - 1}}{8} \) \(= {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} \) \(= {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}\) \(= {\left( {\frac{{ - 1}}{8}} \right)^5}\)

d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} \) \(= {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} \) \(= {\left( {\frac{{ - 3}}{2}} \right)^6}\)

📚 Xem toàn bộ khóa học