Trang chủ / Lớp 9 / Toán Học / Bài 43 trang 74 sách bài tập toán 9 - Cánh diều

📝 Bài 43 trang 74 sách bài tập toán 9 - Cánh diều

📚 👁️ 35 lượt xem 📅 06/01/2026
Một biển báo giao thông có một phần dạng hình chữ thập với các kích thước x (cm), y (cm) và (y = x + 25,AL = AB = CD = DE = FG = GH = IJ = JK)như hình 13. a) Tính diện tích phần hình chữ thập của biển báo giao thông đó theo x. b) Tìm x nếu diện tích phần hình chữ thập của biển báo giao thông đó là 975cm2. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Một biển báo giao thông có một phần dạng hình chữ thập với các kích thước x (cm), y...

Một biển báo giao thông có một phần dạng hình chữ thập với các kích thước x (cm), y (cm) và (y = x + 25,AL = AB = CD = DE = FG = GH = IJ = JK)như hình 13.
a) Tính diện tích phần hình chữ thập của biển báo giao thông đó theo x.
b) Tìm x nếu diện tích phần hình chữ thập của biển báo giao thông đó là 975cm2.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Một biển báo giao thông có một phần dạng hình chữ thập với các kích thước x (cm), y (cm) và \(y = x + 25,\) \(AL = AB = CD = DE = FG = GH = IJ = JK\) như hình 13.

a) Tính diện tích phần hình chữ thập của biển báo giao thông đó theo x.

b) Tìm x nếu diện tích phần hình chữ thập của biển báo giao thông đó là 975cm2.

Phương pháp giải - Xem chi tiết

a) Diện tích cần tìm = diện tích BCHI + diện tích LEFK - diện tích ADGJ

b) Bước 1: Lập phương trình thể hiện diện tích phần hình chữ thập.

Bước 2: Giải phương trình, đối chiếu điều kiện và kết luận.

Lời giải chi tiết

Điều kiện \(x > 0;y > 25\).

a) Diện tích hình chữ nhật BCHI là \(xy = x\left( {x + 25} \right) = {x^2} + 25x\) (m2)

Diện tích hình chữ nhật LEFK là \(xy = x\left( {x + 25} \right) = {x^2} + 25x\) (m2)

Diện tích hình vuông ADGJ là \({x^2}\) (m2)

Diện tích phần hình chữ thập là: \({x^2} + 25x + {x^2} + 25x - {x^2} = {x^2} + 50x\)(m2)

b) Vì diện tích phần hình chữ thập của biển báo giao thông đó là 975cm2 nên ta có:

\({x^2} + 50x = 975\), do đó \({x^2} + 50x - 975 = 0\)

Ta có \(\Delta ' = {25^2} - 1.\left( { - 975} \right) = 1600 > 0\) nên phương trình có 2 nghiệm phân biệt:

\({x_1} = \frac{{ - 25 - \sqrt {1600} }}{1} =  - 65;{x_2} = \frac{{ - 25 + \sqrt {1600} }}{1} = 15\)

Ta thấy \({x_1} =  - 65\) không thỏa mãn điều kiện; \({x_2} = 15\) thỏa mãn điều kiện.

Vậy \(x = 15\).

📚 Xem toàn bộ khóa học