Trang chủ / Lớp 9 / Toán Học / Bài 6.15 trang 17

📝 Bài 6.15 trang 17

📚 👁️ 29 lượt xem 📅 06/01/2026
Một mảnh vườn hình chữ nhật có chiều rộng nhỏ hơn chiều dài 6m và có diện tích là (280{m^2}). Tính các kích thước của mảnh vườn đó. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Một mảnh vườn hình chữ nhật có chiều rộng nhỏ hơn chiều dài 6m và có diện tích là \(280{m^2}\). Tính các kích thước của mảnh vườn đó. Video hướng dẫn giải Phương pháp giải - Xem chi tiết + Gọi chiều rộng mảnh vườn là x, đặt điều kiện, tính chiều dài...

Một mảnh vườn hình chữ nhật có chiều rộng nhỏ hơn chiều dài 6m và có diện tích là (280{m^2}). Tính các kích thước của mảnh vườn đó.

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Một mảnh vườn hình chữ nhật có chiều rộng nhỏ hơn chiều dài 6m và có diện tích là \(280{m^2}\). Tính các kích thước của mảnh vườn đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Gọi chiều rộng mảnh vườn là x, đặt điều kiện, tính chiều dài mảnh vườn theo x.

+ Sử dụng điều kiện diện tích để lập phương trình ẩn x.

+ Giải phương trình ẩn x, tìm nghiệm x, đối chiếu với điều kiện để tìm giá trị x thỏa mãn điều kiện.

Lời giải chi tiết

Gọi chiều rộng của mảnh vườn là x (m, \(x > 0\)) thì chiều dài hình chữ nhật là \(x + 6\left( m \right)\)

Diện tích mảnh vườn là: \(x\left( {x + 6} \right)\left( {{m^2}} \right)\)

Vì diện tích mảnh vườn là \(280{m^2}\) nên ta có:

\(x\left( {x + 6} \right) = 280\)

\({x^2} + 6x - 280 = 0\)

Ta có: \(\Delta ' = {3^2} + 280 = 289 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - 3 + \sqrt {289} = 14 \left( {tm} \right)\), \({x_2} =  - 3 - \sqrt {289} = -20 \left( L \right)\).

Do đó, chiều rộng của mảnh vườn là \( 14 \left( m \right)\), chiều dài của mảnh vườn là \(14 + 6 = 20 \left( m \right)\).

📚 Xem toàn bộ khóa học