Trang chủ / Lớp 8 / Toán Học / Bài 6 trang 60 sách bài tập toán 8 – Cánh diều

📝 Bài 6 trang 60 sách bài tập toán 8 – Cánh diều

📚 👁️ 32 lượt xem 📅 05/01/2026
Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở...

Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Trong Hình 10, cho biết \(ABCD\) là hình thang, \(AB//CD\left( {AB < CD} \right)\); \(M\) là trung điểm của \(DC\); \(AM\) cắt \(BD\) ở \(I\); \(BM\) cắt \(AC\) ở \(K\); \(IK\) cắt \(AD,BC\) lần lượt ở \(E,F\). Chứng minh:

a)      \(IK//AB\)

b)     \(EI = IK = KF\)

Phương pháp giải - Xem chi tiết

Dựa vào định lí Thales: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Lời giải chi tiết

a)      Do \(DM//AB\) nên \(\frac{{IM}}{{IA}} = \frac{{DM}}{{AB}} = \frac{{MC}}{{AB}}\) (1) (do \(DM = MC\)).

Mặt khác, do \(MC//AB\) nên \(\frac{{MK}}{{KB}} = \frac{{MC}}{{AB}}\) (2)

Từ (1) và (2) suy ra \(\frac{{IM}}{{IA}} = \frac{{MK}}{{KB}}\)

Vì thế \(IK//AB\) (định lí Thales đảo)

b)     Áp dụng định lí Thales lần lượt cho các tam giác \(ADM\) với \(EI//DM\), tam giác \(MAB\) với \(IK//AB\) và tam giác \(BMC\) với \(KF//MC\), ta có:

\(\frac{{EI}}{{DM}} = \frac{{AI}}{{AM}} = \frac{{BK}}{{BM}} = \frac{{KF}}{{MC}}\)

Suy ra \(EI = KF\) (do \(DM = MC\)). Mặt khác, áp dụng định lí Thales lần lượt cho các tam giác \(ADM\) với \(EI//DM\) và tam giác \(AMC\) với \(IK//MC\), ta có:

\(\frac{{EI}}{{DM}} = \frac{{AI}}{{AM}} = \frac{{IK}}{{MC}}\)

Suy ra \(EI = IK\) (do \(DM = MC\)). Do \(EI = KF\) và \(EI = IK\) nên \(EI = IK = KF\).

📚 Xem toàn bộ khóa học