Trang chủ / Lớp 10 / Toán Học / Bài 7.24 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📝 Bài 7.24 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📚 👁️ 1 lượt xem 📅 06/01/2026
Cho điểm A(4;2) và hai đường thẳng d:3x + 4y - 20;d':2x + y = 0 Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Cho điểm \(A\left( {4;2} \right)\) và hai đường thẳng \(d:3x + 4y - 20;d':2x + y = 0\) a) Viết phương trình đường thẳng \(\Delta \) đi qua A và vuông góc với đường thẳng d b) Viết phương trình đường tròn \(\left( C \right)\) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại A Phương pháp giải - Xem chi tiết Áp...

Cho điểm A(4;2) và hai đường thẳng d:3x + 4y - 20;d':2x + y = 0

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho điểm \(A\left( {4;2} \right)\) và hai đường thẳng \(d:3x + 4y - 20;d':2x + y = 0\)

a) Viết phương trình đường thẳng \(\Delta \) đi qua A và vuông góc với đường thẳng d

b) Viết phương trình đường tròn \(\left( C \right)\) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại A

Phương pháp giải - Xem chi tiết

Áp dụng các quan hệ vuông góc và song song để tìm ra các vector pháp tuyến và chỉ phương của đường thẳng

Lời giải chi tiết

a)  \(\Delta  \bot d \Rightarrow \overrightarrow {{n_d}}  = \overrightarrow {{u_\Delta }}  = \left( {3;4} \right) \Rightarrow \overrightarrow {{n_\Delta }}  = \left( {4; - 3} \right)\)

Phương trình đưởng thẳng \(\Delta \) có: \(\overrightarrow {{n_\Delta }}  = \left( {4; - 3} \right)\) và đi qua \(A\left( {4;2} \right)\) là \(4\left( {x - 4} \right) - 3\left( {y - 2} \right) = 0 \Rightarrow 4x - 3y - 10 = 0\)

b) Viết phương trình đường tròn \(\left( C \right)\) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại A

+ Tâm I thuộc đường thẳng d’ \( \Rightarrow I\left( {t; - 2t} \right)\)

+ Phương trình đưởng tròn tiếp xúc với d tại A \( \Rightarrow IA \bot d' \Rightarrow \overrightarrow {AI} .\overrightarrow {{v_d}}  = 0 \Rightarrow \left( {t - 4; - 2t - 2} \right).\left( {1; - 2} \right) = 0 \Rightarrow t - 4 + 4t + 4 = 0 \Rightarrow t = 0\)

\( \Rightarrow I\left( {0;0} \right)\)

+ \(IA = R = \sqrt {{2^2} + {4^2}}  = 2\sqrt 5 \)

+ Phương trình đường tròn: \({x^2} + {y^2} = 20\)

📚 Xem toàn bộ khóa học