Trang chủ / Lớp 11 / Toán Học / Bài 7.4 trang 37
Bài học chính: ← Đạo hàm

📝 Bài 7.4 trang 37

📚 👁️ 29 lượt xem 📅 06/01/2026
Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\). Đề bài Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\). a, Tìm tốc độ thay đổi nhiệt độ của bình tại thời điểm t= 2 phút b, Sau bao lâu thì nhiệt độ của bình đạt \({27^0}C\)? Tìm tốc độ thay đổi nhiệt độ của bình tại...

Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\).

Đề bài

Một bình nuôi cấy vi sinh vật được truyền nhiệt đến một nhiệt độ thích hợp. Biết rằng nhiệt độ của bình tại thời điểm t phút được tính bằng hàm số \(f(t) = {t^3}\).

a, Tìm tốc độ thay đổi nhiệt độ của bình tại thời điểm t= 2 phút

b, Sau bao lâu thì nhiệt độ của bình đạt \({27^0}C\)? Tìm tốc độ thay đổi nhiệt độ của bình tại thời điểm đó.

Phương pháp giải - Xem chi tiết

 Tốc độ thay đổi nhiệt độ của bình là đạo hàm của hàm số tại thời điểm t = 2 phút

Lời giải chi tiết

a, Ta có: \(f'(2) = \mathop {\lim }\limits_{t \to 2} \frac{{f(t) - f(2)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{{t^3} - 8}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{(t - 2).({t^2} + 2t + 4)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} ({t^2} + 2t + 4) = 12\)

b, Để nhiệt độ của bình đạt \({27^0}C\) thì: \({t^3} = 27 = {3^3} \Rightarrow t = 3\)

Sau 3 phút thì nhiệt độ bình là \({27^0}C\)

Ta có: \(f'(3) = \mathop {\lim }\limits_{t \to 3} \frac{{f(t) - f(3)}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} \frac{{{t^3} - 27}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} \frac{{(t - 3).({t^2} + 2t + 4)}}{{t - 3}} = \mathop {\lim }\limits_{t \to 3} ({t^2} + 3t + 9) = 27\)

📚 Xem toàn bộ khóa học