Trang chủ / Lớp 10 / Toán Học / Bài 7 trang 39
Bài học chính: ← Nhị thức Newton

📝 Bài 7 trang 39

📚 👁️ 1 lượt xem 📅 06/01/2026
Mỗi tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con? Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Mỗi tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con? Lời giải chi tiết Lời giải chi tiếtCách 1: Số tập hợp con có 0 phần tử là: \(1 = C_{12}^0\) (tập rỗng)Số tập hợp con có 1 phần tử là: \(C_{12}^1\)Số tập hợp con có k phần tử là: \(C_{12}^k\)\( \Rightarrow \)Số tập hợp con của tập hợp có 12 phần tử...

Mỗi tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Mỗi tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?

Lời giải chi tiết

Lời giải chi tiết

Cách 1:

Số tập hợp con có 0 phần tử là: \(1 = C_{12}^0\) (tập rỗng)

Số tập hợp con có 1 phần tử là: \(C_{12}^1\)

Số tập hợp con có k phần tử là: \(C_{12}^k\)

\( \Rightarrow \)Số tập hợp con của tập hợp có 12 phần tử là: \(C_{12}^0 + C_{12}^1 + C_{12}^2 + ... + C_{12}^{12}\)

Theo công thức nhị thức Newton, ta có:

\({\left( {1 + x} \right)^{12}} = C_{12}^0 + C_{12}^1x + C_{12}^2{x^2} + ... + C_{12}^{12}{x^{12}}\)

Thay \(x = 1\) ta được \(C_{12}^0 + C_{12}^1 + C_{12}^2 + ... + C_{12}^{12} = {2^{12}} = 4096\)

Cách 2:

Ta chứng minh bằng quy nạp công thức: Tập hợp A có n phần tử thì có \({2^n}\) tập con.

Bước 1: Với \(n = 0\) ta có A là tập rỗng có duy nhất \(1 = {2^0}\) tập con là tập rỗng.

Như vậy mệnh đề đúng cho trường hợp \(n = 0\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

Tập hợp A có k phần tử thì có \({2^k}\) tập con

Ta sẽ chứng minh mệnh đề cũng đúng với \(n = k + 1\), nghĩa là cần chứng minh

Tập hợp A có \(k + 1\) phần tử thì có \({2^{k + 1}}\) tập con

Thật vậy chọn ra k phần tử của A, từ đó tạo thành \({2^k}\) tập con theo giả thiết quy nạp. Ngoài ra, với mỗi tập trong  \({2^k}\)tập này, ta bổ sung thêm phần tử thứ k+1 còn lại vào mỗi tập. Ta thu được thêm \({2^k}\)tập nữa. Do đó ta được tất cả \({2^k} + {2^k} = {2.2^k} = {2^{k + 1}}\) tập con

Vậy mệnh đề đúng với mọi số tự nhiên \(n \in \mathbb{N}\)

Như vậy tập có 12 phần tử thì có tất cả \({2^{12}} = 4096\) tập con.

 

📚 Xem toàn bộ khóa học