Trang chủ / Lớp 8 / Toán Học / Bài 7 trang 8 sách bài tập toán 8 - Cánh diều

📝 Bài 7 trang 8 sách bài tập toán 8 - Cánh diều

📚 👁️ 26 lượt xem 📅 05/01/2026
Cho đa thức (G = frac{1}{2}{x^2} + bx + 23) với (b) Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Cho đa thức \(G = \frac{1}{2}{x^2} + bx + 23\) với \(b\) là một số cho trước sao cho \(\frac{1}{2} + b\) là số nguyên. Chứng tỏ rằng: \(G\) luôn nhận giá trị nguyên tại mọi số nguyên \(x\). Phương pháp giải - Xem chi tiết Thu gọn đa thức sau đó chứng minh \(G\) luôn nhận giá triij nguyên tại mọi số nguyên \(x\). Lời giải chi tiết Ta...

Cho đa thức (G = frac{1}{2}{x^2} + bx + 23) với (b)

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho đa thức \(G = \frac{1}{2}{x^2} + bx + 23\) với \(b\) là một số cho trước sao cho \(\frac{1}{2} + b\) là số nguyên. Chứng tỏ rằng: \(G\) luôn nhận giá trị nguyên tại mọi số nguyên \(x\).

Phương pháp giải - Xem chi tiết

Thu gọn đa thức sau đó chứng minh \(G\) luôn nhận giá triij nguyên tại mọi số nguyên \(x\).

Lời giải chi tiết

Ta có:

\(\begin{array}{l}G = \frac{1}{2}{x^2} + bx + 23 = \frac{1}{2}{x^2} - \frac{1}{2}x + \frac{1}{2}x + bx + 23\\ = \left( {\frac{1}{2}{x^2} - \frac{1}{2}x} \right) + \left( {\frac{1}{2}x + bx} \right) + 23\\ = \frac{{{x^2} - x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\\ = \frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\end{array}\)

Do trong hai số nguyên liên tiếp luôn có một số chia hết cho 2 nên \(\frac{{\left( {x - 1} \right)x}}{2}\) luôn nhận giá trị nguyên tại mọi số nguyên \(x\). Mà \(\frac{1}{2} + b\) là số nguyên, suy ra \(\frac{{\left( {x - 1} \right)x}}{2} + \left( {\frac{1}{2} + b} \right)x + 23\) luôn nhận giá trị nguyên tại mọi số nguyên \(x\).

Vậy \(G\) luôn nhận giá trị nguyên tại mọi số nguyên \(x\).

📚 Xem toàn bộ khóa học