Trang chủ / Lớp 10 / Toán Học / Bài 8 trang 62 sách bài tập toán 10 - Cánh diều

📝 Bài 8 trang 62 sách bài tập toán 10 - Cánh diều

📚 👁️ 2 lượt xem 📅 06/01/2026
Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau: a) \(\overrightarrow m  = (2a + 3;b - 1)\) và \(\overrightarrow n  = (1; - 2)\) b) \(\overrightarrow u  = (3a - 2;5)\)và \(\overrightarrow v  = (5;2b + 1)\) c) \(\overrightarrow x  = (2a + b;2b)\) và \(\overrightarrow y  = (3 + 2b;b - 3a)\) Phương pháp giải - Xem...

Tìm các số thực a và b sao cho mỗi cặp vectơ sau bằng nhau:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Tìm các số thực ab sao cho mỗi cặp vectơ sau bằng nhau:

a) \(\overrightarrow m  = (2a + 3;b - 1)\) và \(\overrightarrow n  = (1; - 2)\)

b) \(\overrightarrow u  = (3a - 2;5)\)và \(\overrightarrow v  = (5;2b + 1)\)

c) \(\overrightarrow x  = (2a + b;2b)\) và \(\overrightarrow y  = (3 + 2b;b - 3a)\)

Phương pháp giải - Xem chi tiết

\(\overrightarrow a  = ({x_1};{y_1})\) và \(\overrightarrow b  = ({x_2};{y_2})\) bằng nhau khi và chỉ khi \(\left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)

Lời giải chi tiết

a) \(\overrightarrow m  = (2a + 3;b - 1)\) và \(\overrightarrow n  = (1; - 2)\)

\(\overrightarrow m  = \overrightarrow n  \Leftrightarrow \left\{ \begin{array}{l}2a + 3 = 1\\b - 1 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b =  - 1\end{array} \right.\)

b) \(\overrightarrow u  = (3a - 2;5)\)và \(\overrightarrow v  = (5;2b + 1)\)

\(\overrightarrow u  = \overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}3a - 2 = 5\\5 = 2b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{7}{3}\\b = 2\end{array} \right.\)

c) \(\overrightarrow x  = (2a + b;2b)\) và \(\overrightarrow y  = (3 + 2b;b - 3a)\)

\(\overrightarrow x  = \overrightarrow y  \Leftrightarrow \left\{ \begin{array}{l}2a + b = 3 + 2b\\2b = b - 3a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a - b = 3\\3a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{3}{5}\\b =  - \frac{9}{5}\end{array} \right.\)

 

📚 Xem toàn bộ khóa học