Trang chủ / Lớp 10 / Toán Học / Bài 9.13 trang 67 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📝 Bài 9.13 trang 67 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

📚 👁️ 1 lượt xem 📅 06/01/2026
Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc. a) Xác suất để An không đứng cuối hàng là: Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa... Đề bài Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc. a) Xác suất để An không đứng cuối hàng là: A. \(\frac{2}{3}\).                B. \(\frac{1}{3}\).                C.\(\frac{3}{5}\).                 D.\(\frac{2}{5}\). b) Xác suất để Bình và Cường đứng cạnh nhau...

Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc.
a) Xác suất để An không đứng cuối hàng là:

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc.

a) Xác suất để An không đứng cuối hàng là:

A. \(\frac{2}{3}\).                B. \(\frac{1}{3}\).                C.\(\frac{3}{5}\).                 D.\(\frac{2}{5}\).

b) Xác suất để Bình và Cường đứng cạnh nhau là

A. \(\frac{1}{4}\).                B. \(\frac{2}{3}\).                C. \(\frac{2}{5}\).                D.\(\frac{1}{2}\).

c) Xác suất để An đứng giữa Bình và Cường là

A. \(\frac{2}{3}\).                B. \(\frac{1}{3}\).                C.\(\frac{3}{5}\).                 D.\(\frac{2}{5}\).

d) Xác suất để Bình đứng trước An là

A. \(\frac{1}{4}\).                B. \(\frac{2}{3}\).                C. \(\frac{2}{5}\).                D.\(\frac{1}{2}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 3! = 6\).

a) Gọi X là biến cố “An không đứng cuối hàng”. Khi đó ta có

\(X = \left\{ {\left( {A,B,C} \right),\left( {A,C,B} \right),\left( {B,A,C} \right),\left( {C,A,B} \right)} \right\}\). Suy ra \(n\left( X \right) = 4\). Vậy \(P\left( X \right) = \frac{{n\left( X \right)}}{{n\left( \Omega  \right)}} = \frac{2}{3}\).

Chọn A

b) Gọi Y là biến cố “Bình và Cường đứng cạnh nhau”. Khi đó ta có

\(Y = \left\{ {\left( {A,B,C} \right),\left( {A,C,B} \right),\left( {B,C,A} \right),\left( {C,B,A} \right)} \right\}\). Suy ra \(n\left( Y \right) = 4\). Vậy \(P\left( Y \right) = \frac{{n\left( Y \right)}}{{n\left( \Omega  \right)}} = \frac{2}{3}\).

Chọn B

c) Gọi Z là biến cố “An đứng giữa Bình và Cường”. Khi đó ta có

\(Z = \left\{ {\left( {B,A,C} \right),\left( {C,A,B} \right)} \right\}\). Suy ra \(n\left( Z \right) = 2\). Vậy \(P\left( Z \right) = \frac{{n\left( Z \right)}}{{n\left( \Omega  \right)}} = \frac{1}{3}\)

Chọn B

d) Gọi T là biến cố “Bình đứng trước An”. Khi đó ta có

\(T = \left\{ {\left( {B,A,C} \right),\left( {B,C,A} \right),\left( {C,B,A} \right)} \right\}\). Suy ra \(n\left( T \right) = 3\). Vậy \(P\left( T \right) = \frac{{n\left( T \right)}}{{n\left( \Omega  \right)}} = \frac{1}{2}\)

Chọn D

📚 Xem toàn bộ khóa học