Trang chủ / Lớp 9 / Toán Học / Bài 9.28 trang 89
Bài học chính: ← Đa giác đều

📝 Bài 9.28 trang 89

📚 👁️ 28 lượt xem 📅 06/01/2026
Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều ({60^o}) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều. Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN - Lịch sử và Địa lí Đề bài Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục...

Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều ({60^o}) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.


Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho tam giác đều ABC nội tiếp đường tròn (O) như Hình 9.54. Phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F. Chứng minh rằng ADBECF là một lục giác đều.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh \(AD = BD = BE = EC = FC = FA\) và \(\widehat {DAF} = \widehat {AFC} = \widehat {FCE} = \widehat {CEB} = \widehat {EBD} = \widehat {BDA} = {120^o}\), suy ra ADBECF là lục giác đều.

Lời giải chi tiết

Vì lục giác ADBECF nội tiếp đường tròn (O) nên \(OA = OB = OC = OD = OE = OF\).

Vì phép quay ngược chiều \({60^o}\) tâm O biến các điểm A, B, C lần lượt thành các điểm D, E, F nên \(\widehat {AOD} = \widehat {BOE} = \widehat {COF} = {60^o}\).

Vì tam giác ABC đều nên AO, BO là các đường phân giác của tam giác ABC.

Ta có: \(\widehat {BAO} = \widehat {ABO} = \frac{1}{2}\widehat {ABC} = {30^o}\)

Tam giác OAB có: \(\widehat {BOA} = {180^o} - \widehat {BAO} - \widehat {ABO} = {120^0}\).

Suy ra: \(\widehat {BOD} = \widehat {AOB} - \widehat {AOD} = {60^o}\)

Tam giác AOD cân tại O (do \(OA = OD\)), mà \(\widehat {AOD} = {60^o}\) nên tam giác DAO đều.

Do đó, \(DA = AO = OD,\widehat {DAO} = \widehat {ADO} = {60^o}\)

Tương tự ta có: \(DO = OB = BD,\widehat {ODB} = \widehat {OBD} = {60^o}\), \(EO = OB = BE,\widehat {OEB} = \widehat {OBE} = {60^o}\), \(EO = OC = CE,\widehat {OEC} = \widehat {OCE} = {60^o}\), \(FO = OC = CF,\widehat {OFC} = \widehat {OCF} = {60^o}\), \(FO = OA = AF,\widehat {OFA} = \widehat {OAF} = {60^o}\)

Do đó, \(AD = BD = BE = EC = FC = FA\) và \(\widehat {DAF} = \widehat {AFC} = \widehat {FCE} = \widehat {CEB} = \widehat {EBD} = \widehat {BDA} = {120^o}\)

Vậy ADBECF là lục giác đều.

📚 Xem toàn bộ khóa học