Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home chính tả

Công thức xác suất toàn phần và công thức Bayes lớp 12 (Lý thuyết Toán 12 Kết nối tri thức)

by Tranducdoan
15/01/2026
in chính tả
0
Đánh giá bài viết

Với tóm tắt lý thuyết Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 12 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 12.

Mục Lục Bài Viết

  1. Công thức xác suất toàn phần và công thức Bayes lớp 12 (Lý thuyết Toán 12 Kết nối tri thức)
    1. Lý thuyết Công thức xác suất toàn phần và công thức Bayes
    2. Bài tập Công thức xác suất toàn phần và công thức Bayes
    3. Học tốt Công thức xác suất toàn phần và công thức Bayes

Công thức xác suất toàn phần và công thức Bayes lớp 12 (Lý thuyết Toán 12 Kết nối tri thức)

(199k) Xem Khóa học Toán 12 KNTT

Lý thuyết Công thức xác suất toàn phần và công thức Bayes

1. Công thức xác suất toàn phần

Cho hai biến cố A và B. Khi đó, ta có công thức sau:

PB=PA.PB|A+PA¯.PB|A¯.

Công thức trên được gọi là công thức xác suất toàn phần.

Ví dụ 1. Giả sử tỉ lệ người dân của tỉnh Khánh Hòa nghiện thuốc lá là 20%, tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70%, trong số người không nghiện thuốc lá là 15%. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh Khánh Hòa thì khả năng người đó bị bệnh phổi là bao nhiêu %?

Hướng dẫn giải

Gọi biến cố A: “Người dân đó nghiện thuốc lá”.

Biến cố B: “Người dân đó bị bệnh phổi”.

Cần tính P(B).

Theo đề, ta có P(A) = 0,2⇒PA¯=0,8 .

Lại có tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70%, trong số người không nghiện thuốc là là 15% nên P(B|A) = 0,7; PB|A¯=0,15 .

Theo công thức xác suất toàn phần ta có:

PB=PA.PB|A+PA¯.PB|A¯

=0,2.0,7+0,8.0,15=0,26

Vậy khi ta gặp ngẫu nhiên một người dân của tỉnh Khánh Hòa thì khả năng người đó bị bệnh phổi là 26%.

Chú ý. Một phương pháp mô tả trực quan công thức xác suất toàn phần là dùng sơ đồ hình cây.

Ví dụ 2. Cho hai hộp U1 và U2 giống nhau về kích thước và màu sắc bên ngoài. Trong đó hộp U1 chứa 3 quả cầu trắng, 2 quả cầu đen và hộp U2 chứa 2 quả cầu trắng, 2 quả cầu đen. Chọn ngẫu nhiên 1 quả cầu. Tính xác suất để quả cầu lấy ra là màu trắng

Hướng dẫn giải

Ta dùng sơ đồ cây để minh họa như sau

Dựa vào sơ đồ cây, ta có xác suất để quả cầu lấy ra là màu trắng là:

35.12+12.12=1120.

2. Công thức Bayes

Cho A và B là hai biến cố, với P(B) > 0. Khi đó ta có công thức sau:

PA|B=PA.PB|APA.PB|A+PA¯.PB|A¯.

Công thức trên có tên là công thức Bayes.

Chú ý. Theo công thức xác suất toàn phần, ta có:

PB=PA.PB|A+PA¯.PB|A¯.

Do đó, công thức Bayes còn có thể viết dưới dạng

PA|B=PA.PB|APB .

Ý nghĩa của công thức Bayes: Một nhà nghiên cứu quan tâm đến xác suất xảy ra của biến cố A. Theo tính toán ban đầu A có xác suất là P(A) = p. Sau đó, nhà nghiên cứu có được thông tin rằng: “Biến cố B đã xảy ra”. Với thông tin mới này, nhà nghiên cứu sẽ cập nhật hiểu biết của mình về khả năng xảy ra biến cố A, bằng cách tính P(A| B), xác suất của A khi biết B đã xảy ra. Công thức Bayes giúp ta tính P(A| B).

Ví dụ 3. Từ một hộp có 50 quả cầu trắng và 100 quả cầu đen. Người ta rút ngẫu nhiên không hoàn lại từng quả một và rút hai lần. Tính xác suất để lần đầu rút được quả trắng biết lần thứ hai cũng rút được quả trắng.

Hướng dẫn giải

Gọi biến cố A: “Lần đầu rút được quả trắng”.

Biến cố B: “Lần thứ hai rút được quả trắng”.

Ta cần tính P(A|B).

Theo đề ta có: PA=50150; PB|A=49149.

Suy ra PA¯=100150; PB|A¯=50149.

Do đó PB=PA.PB|A+PA¯.PB|A¯

=50150.49149+100150.50149=13.

Suy ra

PA|B=PA.PB|APB =50150.49149:13=49149 .

Bài tập Công thức xác suất toàn phần và công thức Bayes

Cho hai biến cố A và B, với P(B) = 0,8; P(A| B) = 0,7; PA|B¯=0,45.

(Sử dụng cho bài 1, 2)

Bài 1. Tính P(A).

A. 0,25.

B. 0,65.

C. 0,55.

D. 0,5.

Hướng dẫn giải

Đáp án đúng là: B

Vì P(B) = 0,8 suy ra PB¯=0,2.

Có PA=PB.PA|B+PB¯.PA|B¯= 0,8.0,7 + 0,2.0,45 = 0,65.

Bài 2. Tính P(B| A).

A. 0,25.

B. 0,65.

C. 5665.

D. 0,5.

Hướng dẫn giải

Đáp án đúng là: C

Có PB|A=PB.PA|BPA=0,8.0,70,65=5665.

Bài 3. Một hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số. Lấy ra ngẫu nhiên 1 viên bi trong hộp. Tính xác suất để viên bi được lấy ra có đánh số.

Hướng dẫn giải

Gọi biến cố A: “Viên bi lấy ra là màu đỏ”.

Biến cố B: “Viên bi lấy ra được đánh số”.

Ta cần tính P(B).

Theo đề ta có: PA=5080=58⇒PA¯=38;

Ta có PB|A=0,6; PB|A¯=0,5.

Do đó PB=PA.PB|A+PA¯.PB|A¯

=58.0,6+38.0,5=916 .

Bài 4. Có hai chiếc hộp, hộp I có 5 viên bi màu trắng và 5 viên bi màu đen, hộp II có 6 viên bi màu trắng và 4 viên bi màu đen, các viên bi có cùng kích thước và khối lượng. Lấy ngẫu nhiên một viên bi từ hộp I bỏ sang hộp II. Sau đó lấy ngẫu nhiên 1 viên bi từ hộp II.

a) Tính xác suất để viên bi được lấy ra từ hộp II là viên bi màu trắng.

b) Giả sử viên bi được lấy ra từ hộp II là viên bi màu trắng. Tính xác suất viên bi màu trắng đó thuộc hộp I.

Hướng dẫn giải

a) Gọi A là biến cố: “Lấy được viên bi màu trắng từ hộp thứ I”.

B là biến cố: “Lấy được viên vi màu trắng từ hộp thứ II”.

Cần tính P(B).

Theo đề ta có: PA=510=12⇒PA¯=12.

Có PB|A=711; PB|A¯=611.

Ta có

PB=PA.PB|A+PA¯.PB|A¯12.711+12.611=1322.

b) Cần tính P(A| B).

Có PA|B=PA.PB|APB=12.711:1322=713.

Bài 5. Một công ty một ngày sản xuất được 850 sản phẩm trong đó có 50 sản phẩm không đạt chất lượng. Lần lượt lấy ra ngẫu nhiên không hoàn lại 2 sản phẩm để kiểm tra.

a) Tính xác suất để sản phẩm thứ hai không đạt chất lượng biết sản phẩm thứ nhất đạt chất lượng.

b) Tính xác suất để sản phẩm thứ hai không đạt chất lượng.

Hướng dẫn giải

a) Gọi biến cố A: “Sản phẩm thứ nhất đạt chất lượng”.

Biến cố B: “Sản phẩm thứ hai không đạt chất lượng”.

Cần tính P(B| A).

Do sản phẩm thứ nhất đạt chất lượng nên PB|A=50849 .

b) Cần tính P(B).

Ta có PA=800850 ; PA¯=50850 ; PB|A=50849 ; PB|A¯=49849 .

Do đó PB=PA.PB|A+PA¯.PB|A¯

=800850.50849+50850.49849=117 .

Học tốt Công thức xác suất toàn phần và công thức Bayes

Các bài học để học tốt Công thức xác suất toàn phần và công thức Bayes Toán lớp 12 hay khác:

  • Giải sgk Toán 12 Bài 19: Công thức xác suất toàn phần và công thức Bayes

(199k) Xem Khóa học Toán 12 KNTT

Xem thêm tóm tắt lý thuyết Toán lớp 12 Kết nối tri thức hay khác:

  • Lý thuyết Toán 12 Bài 16: Công thức tính góc trong không gian

  • Lý thuyết Toán 12 Bài 17: Phương trình mặt cầu

  • Tổng hợp lý thuyết Toán 12 Chương 5

  • Lý thuyết Toán 12 Bài 18: Xác suất có điều kiện

  • Tổng hợp lý thuyết Toán 12 Chương 6

Xem thêm các tài liệu học tốt lớp 12 hay khác:

  • Giải sgk Toán 12 Kết nối tri thức
  • Giải Chuyên đề học tập Toán 12 Kết nối tri thức
  • Giải SBT Toán 12 Kết nối tri thức
  • Giải lớp 12 Kết nối tri thức (các môn học)
  • Giải lớp 12 Chân trời sáng tạo (các môn học)
  • Giải lớp 12 Cánh diều (các môn học)
Previous Post

199+ kí tự đặc biệt trái tim ❤️ ♡ đẹp, độc đáo mới nhất

Next Post

Hình nền điện thoại học tập: chủ đề, độ phân giải, mẹo tải

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Hình nền điện thoại học tập: chủ đề, độ phân giải, mẹo tải

by Tranducdoan
15/01/2026
0
0

Hình Nền điện Thoại Học Tập không chỉ làm đẹp màn hình mà còn là “điểm chạm” khởi động tâm...

Soạn bài Lời của cây Ngắn nhất lớp 7 Chân trời sáng tạo

by Tranducdoan
15/01/2026
0
0

Bản quyền tài liệu thuộc về VnDoc. Nghiêm cấm mọi hành vi sao chép với mục đích thương mại. Bài...

Lý thuyết GDCD 9 Bài 14: Quyền và nghĩa vụ lao động của công dân (hay, chi tiết)

by Tranducdoan
15/01/2026
0
0

Lý thuyết GDCD 9 Bài 14: Quyền và nghĩa vụ lao động của công dân (hay, chi tiết) I. Khái...

024 888 là mạng gì? Số điện thoại đầu 02488 ở đâu?

by Tranducdoan
15/01/2026
0
0

Đầu số 024 888 là mạng gì? Đầu số 024888 ở đâu? Và đâu là những đầu số 024 888...

Load More
Next Post

Hình nền điện thoại học tập: chủ đề, độ phân giải, mẹo tải

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Đề thi HSG quốc gia môn Ngữ văn ‘rối rắm, khó hiểu’?

15/01/2026

Hình nền điện thoại học tập: chủ đề, độ phân giải, mẹo tải

15/01/2026

Công thức xác suất toàn phần và công thức Bayes lớp 12 (Lý thuyết Toán 12 Kết nối tri thức)

15/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.