• Latest
  • Trending
  • All

Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện

24/12/2025

Bộ câu hỏi kiểm tra Kỹ năng giao tiếp của bạn – Trường Tiểu học Sơn Tây – Hương Sơn – Hà Tĩnh

24/12/2025

Soạn bài Miêu tả trong văn bản tự sự

24/12/2025

Circular No. 48/2019/TT-BTC dated August 08, 2019 of the Ministry of Finance on instructions on the appropriating and handling of provisions of devaluation of stocks, losses of investments, bad debts and warranty on products, goods, services, construction works at enterprises

24/12/2025

Hệ thống thông tin VBQPPL

24/12/2025

24/12/2025

Lập dàn ý tả nghệ sĩ hài mà em yêu thích lớp 5

24/12/2025
Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home chính tả

Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện

by Tranducdoan
24/12/2025
in chính tả
0
Đánh giá bài viết

Bài viết Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện.

Mục Lục Bài Viết

  1. Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện
    1. A. Phương pháp giải
    2. B. Bài tập
    3. C. Bài tập tự luyện

Cách tìm m để phương trình bậc hai có nghiệm thỏa mãn điều kiện

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

A. Phương pháp giải

Cho phương trình: ax2 + bx + c = 0 (a ≠ 0)

1. Điều kiện để phương trình có hai nghiệm phân biệt sao cho x1 = px2 (với p là một số thực)

B1- Tìm điều kiện để phương trình có hai nghiệm phân biệt .

B2- Áp dụng định lý Vi – ét tìm:

B3- Kết hợp (1) và (3) giải hệ phương trình:

B4- Thay x1 và x2 vào (2) ⇒ Tìm giá trị tham số.

2. Điều kiện để phương trình có hai nghiệm thỏa mãn điều kiện: |x1 – x2| = k(k ∈ R)

– Bình phương trình hai vế: (x1 – x2)2 = k2 ⇔ … ⇔ (x1 + x2)2 – 4x1x2 = k2

– Áp dụng định lý Vi-ét tính x1 + x2 và x1x2 thay vào biểu thức ⇒ kết luận.

3. So sánh nghiệm của phương trình bậc hai với một số bất kỳ:

B1: Tìm điều kiện để phương trình có nghiệm (∆ ≥ 0)

B2: Áp dụng Vi-ét tính x1 + x2 và x1x2 (*)

+/ Với bài toán: Tìm m để phương trình có hai nghiệm > α

Ta có: . Thay biểu thức Vi-ét vào hệ(*) để tìm m

+/ Với bài toán: Tìm m để phương trình có hai nghiệm < α

Ta có: (*).Thay biểu thức Vi-ét vào hệ(*) để tìm m

+/ Với bài toán: Tìm m để phương trình có hai nghiệm: x1 < α < x2

Ta có: (x1 – α)(x2 – α) < 0 (*). Thay biểu thức Vi-ét vào (*) để tìm m

Ví dụ 1: Cho phương trình: x2 – (2m – 1)x + m2 – 1 = 0 (x là ẩn số)

a) Tìm điều kiện của m để phương trình đã cho có hai nghiệm phân biệt.

b) Định m để hai nghiệm x1, x2 của phương trình đã cho thỏa mãn (x1 – x2)2 = x1 – 3×2

Giải

a) Δ = (2m – 1)2 – 4.(m2 – 1)= 4m2 – 4m + 1 – 4m2 + 4 = 5- 4m

Phương trình có hai nghiệm phân biệt khi Δ > 0 ⇔ 5 – 4m > 0 ⇔ m <

b) Phương trình có hai nghiệm ⇔ m ≤

Kết hợp với điều kiện (thỏa mãn) là các giá trị cần tìm.

Vậy với m = 1 hoặc m = – 1 thì phương trình đã cho có 2 nghiệm x1, x2 thỏa mãn (x1 – x2)2 = x1 – 3×2.

Ví dụ 2: Cho phương trình x2 – 10mx + 9m = 0 (m là tham số)

a) Giải phương trình đã cho với m = 1.

b) Tìm các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa điều kiện x1 – 9×2 = 0.

Giải

a) Với m = 1 phương trình đã cho trở thành x2 – 10x + 9 = 0.

Ta có: a + b + c = 0 nên phương trình có hai nghiệm phân biệt là

b) Δ’ = (-5m)2 – 1.9m = 25m2 – 9m

Điều kiện phương trình đã cho có hai nghiệm phân biệt là Δ’ > 0 ⇔ 25m2 – 9m > 0

Theo hệ thức Vi-ét ta có

Từ (*) và giả thiết ta có hệ phương trình:

Thay vào phương trình (**) ta có:

Với m = 0 ta có Δ’ = 25m2 – 9m = 0 không thỏa mãn điều kiện phương trình có 2 nghiệm phân biệt.

Với m = 1 ta có Δ’ = 25m2 – 9m = 16 > 0 thỏa mãn điều kiện để phương trình có 2 nghiệm phân biệt.

Kết luận: Vậy với m = 1thì phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa điều kiện x1-9×2 = 0

Ví dụ 3: Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số).

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.

b) Tìm giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1 < 1 < x2

Giải

a) Ta có: Δ = [-2(m – 1)]2 – 4.1.(2m – 5) = 4m2 – 12m + 22

= (2m)2 – 2.2m.3 + 9 + 13 = (2m-3)2 + 13 > 0 (luôn đúng với mọi m)

Vậy phương trình luôn có hai nghiệm phân biệt với mọi m.

b) Theo hệ thức Vi-ét, ta có:

Ta có: x1 < 1 < x2 ⇒ ⇒(x1 – 1)(x2 – 1) < 0⇒x1 x2 – (x1+x2)+1 < 0 (II)

Thay (I) vào (II) ta có: (2m – 5) – (2m – 2) + 1 < 0 ⇔ 0.m – 2 < 0 (đúng với mọi m).

Vậy với mọi m thì phương trình trên có hai nghiệm x1, x2 thỏa mãn x1 < 1 < x2

B. Bài tập

Câu 1: Cho phương trình x2 – (2m + 2)x + 2m = 0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn

A. m = 0

B. m = 1

C. m = 3

D. m = 4

Giải

Phương trình x2 – (2m + 2)x + 2m = 0 ⇔ x2 – 2(m + 1)x + 2m = 0

Điều kiện PT có 2 nghiệm không âm x1, x2 là

Vậy m = 0 là giá trị cần tìm.

Đáp án đúng là A

Câu 2: Cho phương trình x2 + 2x – m2 – 1 = 0 (m là tham số)

Tìm m để phương trình trên có hai nghiệm thỏa mãn x1 = -3×2

A. m = 3

B. m = ±1

C. m = ±√2

D. m = -2

Giải

Ta có: Δ’ = 12 – 1.(-m2 – 1)=1 + m2 + 1 = m2 + 2 > 0 (luôn đúng với mọi m)

Suy ra phương trình luôn có hai nghiệm phân biệt với mọi m.

Theo Vi-ét ta có:

Ta có: x1 + x2 = -2 (do trên) và x1 = -3×2 nên có hệ phương trình sau:

Thay (*) vào biểu thức x1.x2 = -m2 – 1 ta được:

Vậy m = ±√2 là các giá trị cần tìm.

Đáp án đúng là C

Câu 3: Cho phương trình x2 – 2(m + 1)x + m2 + m – 1 = 0 (m là tham số)

Gọi S là tập tất cả các giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện . Tính tích của các giá trị đó

Giải

Δ’ = (m + 1)2 – (m2 + m – 1) = m2 + 2m + 1 – m2 – m + 1 = m + 2

Phương trình đã cho có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ m + 2 > 0 ⇔ m > -2

Áp dụng hệ thức Vi-ét, ta có:

Do đó:

Kết hợp với điều kiện m > -2 là các giá trị cần tìm.

Đáp án đúng là C

Câu 4: Cho phương trình (m là tham số). Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm thỏa mãn

Giải

Để phương trình đã cho có hai nghiệm phân biệt thì ∆ ≥ 0

Phương trình có nghiệm khác 0

Kết hợp với điều kiện ta có

Vậy là các giá trị cần tìm.

Đáp án đúng là B

Câu 5: Cho phương trình (m là tham số).

Tìm m để phương trình có hai nghiệm là số đo của 2 cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3.

A. m = ±2

B. m = ±√2

C. m = – 1

D. m = 0

Giải

Ta có: , luôn đúng với mọi m

Suy ra phương trình luôn có hai nghiệm phân biệt với mọi giá trị m.

Giả sử phương trình có hai nghiệm là x1, x2.

Áp dụng Vi-et ta có:

Theo đề bài x1, x2 là số đo của 2 cạnh góc vuông của tam giác vuông có cạnh huyền bằng 3 nên ta có:

Vậy m = ±2 là các giá trị cần tìm.

Đáp án đúng là A

Câu 6: Cho phương trình x2 – 2x – 2m2 = 0 với x là ẩn số.

Tìm giá trị của m để hai nghiệm của phương trình thỏa hệ thức x12 = 4×22.

A. m = ±2

B. m = ±1

C. m = -6

D. m = 3

Giải

Ta có: Δ’ = (-1)2 – (-2m2 )= 1 + 2m2 > 0

Suy ra phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

Giả sử phương trình có hai nghiệm x1, x2 theo hệ thức Vi-ét:

Vậy m = ±2 là giá trị cần tìm.

Đáp án đúng là A

Câu 7: Cho phương trình x2 – 5x + m = 0 (m là tham số).

Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn |x1 – x2| = 3.

A. m = 2

B. m = 4

C. m = 6

D. m = 8

Giải

Ta có: ∆ = 25 – 4m

Để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thì

Theo Vi-ét, ta có: x1 + x2 = 5 (1) và x1.x2 = m (3)

Mặt khác theo giả thiết ta có: |x1 – x2| = 3 (2)

Giải hệ (1) và (2):

Với x1 = 4, x2 = 1 thay vào (3) ta được m = 4

Với x1 = 1, x2 = 4 thay vào (3) ta được m = 4

m = 4 thỏa mãn điều kiện (*) , vậy m = 4 là giá trị cần tìm

Đáp án đúng là B

Câu 8: Cho phương trình bậc hai x2 + 2(m – 1)x – (m + 1)= 0

Tìm giá trị m để phương trình có một nghiệm lớn hơn và một nghiệm nhỏ hơn 1.

Giải

Ta có:

Suy ra phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m.

Theo hệ thức Vi- ét ta có:

Để phương trình có một nghiệm lớn hơn , một nghiệm nhỏ hơn 1 thì (x1 – 1)(x2 – 1) < 0

Đáp án đúng là C

Câu 9: Cho phương trình bậc hai: x2 + 2(m – 1)x – (m + 1) = 0

Tìm giá trị m để phương trình có hai nghiệm lớn hơn 2

A. m > – 1

B. m > 2

C. m < 2

D. m < 0

Giải

Ta có:

Suy ra phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m.

Theo hệ thức Vi- ét ta có:

Để phương trình có hai nghiệm đều nhỏ hơn 2 thì:

Vậy đáp án đúng là D

Câu 10: Cho phương trình x2 – (2m + 3)x + m2 + 3m + 2 = 0

Xác định m để phương trình có hai nghiệm thỏa mãn -3 < x1 < x2 < 6

A. m > 1

B. -2 < m < 2

C. -4 < m < 4

D. m < 3

Giải

Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.

Theo hệ thức Vi-et ta có:

Vì -3 < x1 < x2 < 6 nên

Vậy -4 < m < 4.

Đáp án đúng là C

C. Bài tập tự luyện

Bài 1. Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm phân biệt:

a) x2 + 2x + m = 0;

b) – x2 + 2mx – m2 – m = 0;

c) mx2 – 3(m + 1)x + m2 – 13m – 6 = 0.

Bài 2. Cho phương trình x2 – (- 4m – 1)x + 2(m – 4) = 0. Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn:

a) x2 – x1 = 17;

b) Biểu thức A = (x1 – x2)2 có giá trị nhỏ nhất;

c) Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

Bài 3. Cho phương trình x2 – 5x + m + 4 = 0 (m là tham số). Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị của m để phương trình thỏa mãn:

x1(1 – 3×2) + x2(1 – 3×1) = m2 – 23.

Bài 4. Cho phương trình x2 – (2m + 1)x + m2 + m – 6 = 0.

a) Chứng minh phương trình luôn có hai nghiệm phân biệt;

b) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt;

c) Gọi x1, x2 là hai nghiệm của phương trình. Tìm giá trị nhỏ nhất của biểu thức A=x12+x22;;

d) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x13+x23=19

Bài 5. Cho hai phương trình x2 – mx – m – 1 = 0. Tìm các giá trị của tham số m để phương trình

a) Có hai nghiệm x1, x2 thỏa mãn x13+x23=-1;

b) Có hai nghiệm x1, x2 thỏa mãn x1-x2≥3;

c) Có hai nghiệm x1, x2. Từ đó, hãy lập phương trình bậc hai có u và v là nghiệm biết rằng u=x1+1×2 và v=x2+1×1.

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

  • Cách lập phương trình bậc hai khi biết hai nghiệm của phương trình đó
  • Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu
  • Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào tham số | Tìm hệ thức liên hệ giữa x1 x2 độc lập với m
  • Cách giải hệ phương trình đối xứng hai ẩn cực hay
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
Previous Post

Soạn bài Chữ người tử tù (trang 21) – ngắn nhất Kết nối tri thức

Next Post

Vẽ tranh đề tài tự do

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Soạn bài Miêu tả trong văn bản tự sự

by Tranducdoan
24/12/2025
0
0

Với soạn bài Miêu tả trong văn bản tự sự trang 91, 92 Ngữ văn lớp 9 sẽ giúp học...

Hệ thống thông tin VBQPPL

by Tranducdoan
24/12/2025
0
0

HIẾN PHÁP NƯỚC CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM NĂM 1992 LỜI NÓI ĐẦU Trải qua mấy nghìn...

by Tranducdoan
24/12/2025
0
0

Bạn nghe đâu đó về formalin có tác dụng ngâm xác nhưng chưa hiểu cặn kẽ về hợp chất này....

Lập dàn ý tả nghệ sĩ hài mà em yêu thích lớp 5

by Tranducdoan
24/12/2025
0
0

Lập dàn ý bài văn tả nghệ sĩ hài mà em yêu thích lớp 5 được VnDoc sưu tầm, chọn...

Load More
Next Post

Vẽ tranh đề tài tự do

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Bộ câu hỏi kiểm tra Kỹ năng giao tiếp của bạn – Trường Tiểu học Sơn Tây – Hương Sơn – Hà Tĩnh

24/12/2025

Soạn bài Miêu tả trong văn bản tự sự

24/12/2025

Circular No. 48/2019/TT-BTC dated August 08, 2019 of the Ministry of Finance on instructions on the appropriating and handling of provisions of devaluation of stocks, losses of investments, bad debts and warranty on products, goods, services, construction works at enterprises

24/12/2025
Xoilac TV trực tiếp bóng đá Socolive trực tiếp
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.