Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home chính tả

Toán 12: Lý thuyết phương trình mặt cầu và các dạng bài tập

by Tranducdoan
13/02/2026
in chính tả
0
Đánh giá bài viết

Mục Lục Bài Viết

  1. 1. Mặt cầu là gì?
  2. 2. Phương trình mặt cầu trong không gian có mấy dạng?
    1. 2.1. Phương trình mặt cầu dạng tổng quát
    2. 2.2. Phương trình mặt cầu chính tắc
  3. 3. Cách viết phương trình mặt cầu dễ hiểu nhất
    1. 3.1. Phương trình mặt cầu và mặt phẳng
    2. 3.2. Phương trình mặt cầu ở vị trí tiếp xúc với đường thẳng
  4. 4. Tổng hợp các phương pháp giải bài tập về phương trình mặt cầu
    1. 4.1. Dạng 1: Viết phương trình mặt cầu biết tâm và bán kính
    2. 4.2. Dạng 2: Viết phương trình mặt cầu biết tâm và 1 điểm
    3. 4.3. Dạng 3: Tìm dạng tổng quát của phương trình mặt cầu ngoại tiếp tứ diện
    4. 4.4. Dạng 4: Từ 4 điểm OABC viết phương trình mặt cầu
    5. Nắm chắc mọi dạng bài liên quan tới hình cầu với khóa PAS THPT
    6. 4.5. Dạng 5: Phương trình mặt cầu đi qua 4 điểm
    7. 4.6. Dạng 6: Cho 2 điểm viết phương trình mặt cầu
    8. 4.7. Dạng 7: Tìm điều kiện, tìm giá trị m để phương trình là mặt cầu

1. Mặt cầu là gì?

Trước khi đi vào chi tiết lý thuyết phương trình mặt cầu trong không gian, học sinh cần nắm vững định nghĩa mặt cầu trước tiên. Theo chương trình hình học THPT, mặt cầu được định nghĩa là tập hợp các điểm cách đều một khoảng không đổi một điểm cho trước. Khoảng cách cố định đó được gọi là bán kính. Tâm mặt cầu là điểm cho trước.

Ngoài ra, mặt cầu còn được định nghĩa theo mặt tròn xoay, khi đó mặt cầu chính là mặt tròn xoay khi quay đường tròn quanh một đường kính.

2. Phương trình mặt cầu trong không gian có mấy dạng?

2.1. Phương trình mặt cầu dạng tổng quát

Cho không gian Oxyz có mặt cầu S thỏa mãn điều kiện:

a^{2} + b^{2} + c^{2} - d > 0. Ta có phương trình cơ bản của (S) như sau:

(1)

Từ phương trình cơ bản, ta có công thức tính bán kính của (S) như sau:

2.2. Phương trình mặt cầu chính tắc

Ngoài ra, khi biết bán kính R, tâm I(a;b;c) thì mặt cầu S trong không gian Oxyz có phương trình chính tắc như sau:

3. Cách viết phương trình mặt cầu dễ hiểu nhất

3.1. Phương trình mặt cầu và mặt phẳng

Cho mặt cầu:

có tâm I(a;b;c) và R là bán kính

(S): x^{2} + y^{^{2}} + z^{2} - 2ax - 2by - 2cz +d = 0 tâm I (a;b;c)

là bán kính.

Ta có công thức tính khoảng cách từ tâm mặt cầu đến mặt phẳng để xét vị trí tương đối giữa mặt phẳng và mặt cầu:

d (I, (P)) =frac{left | A.a+B.b+C.c+D right |}{sqrt{A^{2}+B^{2}+C^{2}}}

3.2. Phương trình mặt cầu ở vị trí tiếp xúc với đường thẳng

Mặt phẳng tiếp xúc mặt cầu

d(I,(P))=R và mặt phẳng (P) đồng thời là tiếp diện của mặt cầu. Khi đó, tọa độ hình chiếu của mặt cầu và mặt phẳng là điểm tiếp xúc H của mặt cầu và mặt phẳng, kí hiệu là vector IH (vectơ pháp tuyến của mặt phẳng (P)).

Đăng ký ngay để được các thầy cô tư vấn và xây dựng kế hoạch ôn tập kiến thức hình học không gian hiệu quả nhất

phuong triinh mat cau 3

4. Tổng hợp các phương pháp giải bài tập về phương trình mặt cầu

4.1. Dạng 1: Viết phương trình mặt cầu biết tâm và bán kính

Các bước giải phương trình mặt cầu tổng quát:

Cách 1: Viết phương trình mặt cầu dạng chính tắc

  • Bước 1: Xác định tâm O(a;b;c)

  • Bước 2: Tìm bán kính của (S) là R

  • Bước 3: Mặt cầu (S) có tâm O(a;b;c) và bán kính R có dạng phương trình:

(S): (x - a)^{2} + (y - b)^{2} + (z -c)^{2} = R^{2}

Cách 2: Cách viết phương trình mặt cầu dưới dạng tổng quát

  • Bước 1: Phương trình (S): x^{2} + y^{2}+z^{^{2}} - 2ax - 2by - 2zc +d = 0

  • Bước 2: Với khi phương trình (S) hoàn toàn xác định.

Chúng ta cùng xét ví dụ minh họa sau đây để hiểu hơn về phương pháp giải bài toán viết phương trình mặt cầu khi biết tâm và bán kính.

Ví dụ: Cho đường kính AB, A(2;1;3) và B(0;-3;1). Tìm dạng công thức phương trình mặt cầu?

Giải:

4.2. Dạng 2: Viết phương trình mặt cầu biết tâm và 1 điểm

Đối với dạng bài này, ta dễ dàng tính được bán kính của mặt cầu bằng cách tính độ dài vector từ tâm cho đến điểm mà mặt cầu đi qua. Sau đó, ta áp dụng cách giải như dạng 1.

Ví dụ minh họa: Cho phương trình mặt cầu (S) có tâm I(1;2;-3) và đi qua điểm A(1;0;4). Viết phương trình mặt cầu (S) đó?

Giải:

4.3. Dạng 3: Tìm dạng tổng quát của phương trình mặt cầu ngoại tiếp tứ diện

Phương pháp giải:

Bước 1: Gọi I(x;y;z) là tâm của mặt cầu (S)

Bước 2: Lập luận do mặt cầu đề bài có đặc điểm là ngoại tiếp tứ diện ABCD, nên IA=IB=IC=ID

Bước 3: Kết luận tọa độ điểm I, từ đó suy ra độ dài bán kính và đưa về dạng 1 cơ bản.

Để hiểu hơn, các em học sinh cùng xem xét ví dụ minh họa sau đây:

Ví dụ: Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD biết tọa độ 3 điểm A(6;-2;3), B(0;1;6), C(2;0;-1), D(4;1;0).

Giải:

4.4. Dạng 4: Từ 4 điểm OABC viết phương trình mặt cầu

Dạng toán này còn có biến thể khác về đề bài đó là: Viết phương trình mặt cầu (S) qua 3 điểm A, B, C và có tâm thuộc mặt phẳng (P) cho trước.

Các bước giải như sau:

Bước 1: Gọi tâm mặt cầu I(a, b, c) thuộc mặt phẳng (P)

Bước 2: Lập hệ phương trình

Bước 3: Giải hệ phương trình đã lập ở bước 2, sau đó thay vào 1 trong 2 phương trình để tìm bán kính mặt cầu.

Các em học sinh cùng VUIHOC xét ví dụ minh họa sau đây:

Ví dụ: Cho 3 điểm A(2;0;1), B(1;0;0), C(1;1;1). Viết phương trình mặt cầu (S) có tâm thuộc mặt phẳng (P): x+y+z-2=0.

Giải:

Nắm chắc mọi dạng bài liên quan tới hình cầu với khóa PAS THPT

4.5. Dạng 5: Phương trình mặt cầu đi qua 4 điểm

Ở dạng bài viết phương trình mặt cầu khi biết 4 điểm mà mặt cầu đó đi qua, chúng ta sử dụng phương pháp lập hệ phương trình 4 ẩn giống dạng 4 để tiến hành giải phương trình.

Ví dụ minh họa: Cho 4 điểm A(2;0;0), B(1;3;0), C(-1;0;3), D(1;2;3) đều đi qua mặt cầu (S). Bán kính R của mặt cầu (S) là bao nhiêu?

Giải:

4.6. Dạng 6: Cho 2 điểm viết phương trình mặt cầu

Dạng toán này tương tự với dạng viết phương trình mặt cầu (S) có đường kính AB cho trước. Phương pháp giải dạng toán này cụ thể như sau:

Bước 1: Tìm trung điểm AB, tâm I trung điểm của AB chính là tâm của mặt cầu

Bước 2: Tính IA=R

Bước 3: Đưa về dạng 1 giải rồi kết luận

Bài tập ví dụ minh họa: Viết phương trình mặt cầu đường kính AB khi biết 2 điểm A(-2;1;0) và B(2;3;-2).

Giải:

Đăng ký ngay để nhận bí kíp nắm trọn kiến thức và phương pháp giải mọi dạng bài tập Toán THPT Quốc Gia ngay!

4.7. Dạng 7: Tìm điều kiện, tìm giá trị m để phương trình là mặt cầu

Nhìn chung, đây là dạng toán phương trình mặt cầu nâng cao so với các dạng bài tập thông thường khác. Ở dạng này, học sinh áp dụng các điều kiện và tính chất nhận biết phương trình mặt cầu như a^{2} + b^{2} + c^{2} - d > 0 để giải

Ví dụ minh họa: Trong không gian với hệ tọa độ Oxyz, tìm m để là một phương trình mặt cầu.

Giải:

Bài viết trên đã tổng hợp toàn bộ lý thuyết cũng như các dạng toán thường gặp về phương trình mặt cầu. Hy vọng các em học sinh sẽ tiếp thu và bổ sung thêm những phần kiến thức về mặt cầu còn thiếu và giải bài tập thành thạo hơn. Truy cập ngay Vuihoc.vn để đăng ký tài khoản hoặc liên hệ trung tâm hỗ trợ để ôn tập nhiều hơn về các dạng toán 12 nhé!

Previous Post

Tóm tắt một tác phẩm truyện mà em đã đọc theo một số hình thức sau: – Viết văn bản tóm tắt. – Lập sơ đồ để tóm tắt. Có thể chuyển thể thành truyện tranh hoặc thơ bốn chữ, năm chữ sau khi em đã tóm tắt được nội dung chính của truyện.

Next Post

Tóm tắt cuộc khởi nghĩa Hai Bà Trưng

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Tiếng nước tôi: Lộn xộn chính tả quanh i và y

by Tranducdoan
14/02/2026
0
0

Những gì lộn xộn đều do quy định không thuyết phục mà ra. Ngày 30-11-1980 Bộ Giáo dục và Ủy...

Nông Nổi hay Nông Nỗi đúng chính tả? Ý nghĩa là gì?

by Tranducdoan
14/02/2026
0
0

Nông nổi hay nông nỗi - cách viết nào mới chính xác? Chính là nông nổi. Cùng VJOL - VietnamJOL...

Cổ vũ hay cỗ vũ là đúng chính tả?

by Tranducdoan
14/02/2026
0
0

Nếu bạn đang thắc mắc cổ vũ hay cỗ vũ là đúng, Văn VN sẽ giải đáp chính xác, check...

Li Kì hay Ly Kỳ đúng chính tả?

by Tranducdoan
14/02/2026
0
0

Li kì hay ly kỳ - Ly kỳ là từ đúng chính tả trong từ điển tiếng Việt. Nhiều người...

Load More
Next Post

Tóm tắt cuộc khởi nghĩa Hai Bà Trưng

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet sumclub game bài đổi thưởng topclub 789p
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.