Trang chủ / Lớp 8 / Toán Học / Giải bài 14 trang 86

📝 Giải bài 14 trang 86

📚 👁️ 4 lượt xem 📅 05/01/2026
Cho tam giác Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Khoa học tự nhiên Đề bài Cho tam giác \(ABC\)nhọn có hai đường cao \(BE,CF\) cắt nhau tại \(H\). Chứng minh rằng a) \(\Delta AEB\backsim\Delta AFC\). b) \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\). c) \(\Delta HEF\backsim\Delta HCB\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết - Nếu tam giác vuông này có một góc nhọn bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng...

Cho tam giác

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác \(ABC\)nhọn có hai đường cao \(BE,CF\) cắt nhau tại \(H\). Chứng minh rằng

a) \(\Delta AEB\backsim\Delta AFC\).

b) \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\).

c) \(\Delta HEF\backsim\Delta HCB\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Nếu tam giác vuông này có một góc nhọn bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.

- Nếu \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = k\).

- Hai tam giác đồng dạng có các góc tương ứng bằng nhau.

Lời giải chi tiết

a) Vì \(BE\)là đường cao nên \(\widehat {AEB} = 90^\circ \); vì \(CF\)là đường cao nên \(\widehat {AFC} = 90^\circ \)

Xét tam giác \(AEB\) và tam giác \(AFC\) có:

\(\widehat A\) (chung)

\(\widehat {AEB} = \widehat {AFC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AEB\backsim\Delta AFC\) (g.g).

b) Vì \(\Delta AEB\backsim\Delta AFC\) nên \(\widehat {ACF} = \widehat {ABE}\) (hai góc tương ứng) hay \(\widehat {ECH} = \widehat {FBH}\).

Xét tam giác \(HEC\) và tam giác \(HFB\) có:

\(\widehat {ECH} = \widehat {FBH}\) (chứng minh trên)

\(\widehat {CEH} = \widehat {BFH} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta HEC\backsim\Delta HFC\) (g.g).

Suy ra, \(\frac{{HE}}{{HF}} = \frac{{HC}}{{HB}}\) (các cặp cạnh tương ứng tỉ lệ)

Hay \(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\) (điều phải chứng minh).

c) Xét tam giác \(HEF\) và tam giác \(HCB\) có:

\(\widehat {FHE} = \widehat {BHC}\) (hai góc đối đỉnh)

\(\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\) (chứng minh trên)

Suy ra, \(\Delta HEF\backsim\Delta HCB\) (c.g.c).

📚 Xem toàn bộ khóa học