Trang chủ / Lớp 8 / Toán Học / Giải bài 2.22 trang 50

📝 Giải bài 2.22 trang 50

📚 👁️ 29 lượt xem 📅 05/01/2026
Tính nhanh: Đề bài Tính nhanh: \(\frac{t}{{{t^2} + 1}}.\frac{{x - 2y + z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{x + y - 2z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{y + z - 2x}}{{x + y + z}}\) Phương pháp giải - Xem chi tiết Sử dụng 7 hằng đẳng thức đáng nhớ và các phương pháp nhân và chia hai phân thức để tính nhanh. Lời giải chi tiết \(\begin{array}{l}\frac{t}{{{t^2} + 1}}.\frac{{x - 2y + z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{x + y - 2z}}{{x + y + z}} + \frac{t}{{{t^2} +...

Tính nhanh:

Đề bài

Tính nhanh: \(\frac{t}{{{t^2} + 1}}.\frac{{x - 2y + z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{x + y - 2z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{y + z - 2x}}{{x + y + z}}\)

Phương pháp giải - Xem chi tiết

Sử dụng 7 hằng đẳng thức đáng nhớ và các phương pháp nhân và chia hai phân thức để tính nhanh.

Lời giải chi tiết

\(\begin{array}{l}\frac{t}{{{t^2} + 1}}.\frac{{x - 2y + z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{x + y - 2z}}{{x + y + z}} + \frac{t}{{{t^2} + 1}}.\frac{{y + z - 2x}}{{x + y + z}}\\ = \frac{t}{{{t^2} + 1}}.\left( {\frac{{x - 2y + z}}{{x + y + z}} + \frac{{x + y - 2z}}{{x + y + z}} + \frac{{y + z - 2x}}{{x + y + z}}} \right)\\ = \frac{t}{{{t^2} + 1}}.\left( {\frac{{x - 2y + z + x + y - 2z + y + z - 2x}}{{x + y + z}}} \right)\\ = \frac{t}{{{t^2} + 1}}.\left( {\frac{{0.0.0}}{{x + y + z}}} \right) = 0\end{array}\)

📚 Xem toàn bộ khóa học