Trang chủ / Lớp 8 / Toán Học / Giải bài 2.6 trang 33

📝 Giải bài 2.6 trang 33

📚 👁️ 29 lượt xem 📅 05/01/2026
Chứng minh rằng với mọi số tự nhiên n, ta có: ({left( {n + 2} right)^2} - {n^2}) chia hết cho 4. Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Khoa học tự nhiên Đề bài Chứng minh rằng với mọi số tự nhiên n, ta có: \({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4. Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\) Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì...

Chứng minh rằng với mọi số tự nhiên n, ta có:
({left( {n + 2} right)^2} - {n^2}) chia hết cho 4.

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Chứng minh rằng với mọi số tự nhiên n, ta có:

\({\left( {n + 2} \right)^2} - {n^2}\) chia hết cho 4.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)

Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì a.b chia hết cho 4.

Lời giải chi tiết

Ta có:

\({\left( {n + 2} \right)^2} - {n^2} = \left( {n + 2 - n} \right).\left( {n + 2 + n} \right) = 2.\left( {2n + 2} \right) = 2.2.\left( {n + 1} \right) = 4.\left( {n + 1} \right)\).

Vì \(4 \vdots 4\) nên \(4\left( {n + 1} \right) \vdots 4\) với mọi số tự nhiên n. 

📚 Xem toàn bộ khóa học