Trang chủ / Lớp 9 / Toán Học / Mục 1 trang 55

📝 Mục 1 trang 55

📚 👁️ 27 lượt xem 📅 06/01/2026
So sánh a. (sqrt {{4^2}} ) và (left| 4 right|) b. (sqrt {{{left( { - 5} right)}^2}} ) và (left| { - 5} right|) Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí HĐ1 Video hướng dẫn giảiTrả lời câu hỏi Hoạt động 1 trang 55 SGK Toán 9 Cánh diềuSo sánh a. \(\sqrt {{4^2}} \) và \(\left| 4 \right|\) b. \(\sqrt {{{\left( { - 5} \right)}^2}} \) và \(\left| { - 5} \right|\)Phương pháp giải:Dựa vào định nghĩa căn bậc hai và trị tuyệt đối để so sánh.Lời...

So sánh
a. (sqrt {{4^2}} ) và (left| 4 right|)
b. (sqrt {{{left( { - 5} right)}^2}} ) và (left| { - 5} right|)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 55 SGK Toán 9 Cánh diều

So sánh

a. \(\sqrt {{4^2}} \) và \(\left| 4 \right|\)

b. \(\sqrt {{{\left( { - 5} \right)}^2}} \) và \(\left| { - 5} \right|\)

Phương pháp giải:

Dựa vào định nghĩa căn bậc hai và trị tuyệt đối để so sánh.

Lời giải chi tiết:

a. Ta có: \(\sqrt {{4^2}}  = \sqrt {16}  = 4\)

                \(\left| 4 \right| = 4\)

Vậy \(\sqrt {{4^2}}  = \left| 4 \right|\).

b. Ta có: \(\sqrt {{{\left( { - 5} \right)}^2}}  = \sqrt {25}  = 5\)

                \(\left| { - 5} \right| = 5\)

Vậy \(\sqrt {{{\left( { - 5} \right)}^2}}  = \left| { - 5} \right|\).

LT1

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 1 trang 55 SGK Toán 9 Cánh diều

Tính:

a. \(\sqrt {{{35}^2}} \)

b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}} \)

c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} \)

Phương pháp giải:

Dựa vào tính chất “Với mọi số a, ta có: \(\sqrt {{a^2}}  = \left| a \right|\)” để giải bài toán.

Lời giải chi tiết:

a. \(\sqrt {{{35}^2}}  = \left| {35} \right| = 35\)

b. \(\sqrt {{{\left( { - \frac{7}{9}} \right)}^2}}  = \left| { - \frac{7}{9}} \right| = \frac{7}{9}\)

c. \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}}  = \left| {1 - \sqrt 2 } \right|\)

Do \(\sqrt 1  < \sqrt 2 \) hay \(1 < \sqrt 2 \) nên \(1 - \sqrt 2  < 0\). Vì thế, ta có: \(\left| {1 - \sqrt 2 } \right| = \sqrt 2  - 1\).

Vậy \(\sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}}  = \left| {1 - \sqrt 2 } \right| = \sqrt 2  - 1\).

📚 Xem toàn bộ khóa học