Trang chủ / Lớp 9 / Toán Học / Mục 3 trang 65, 66
Bài học chính: ← Hình trụ

📝 Mục 3 trang 65, 66

📚 👁️ 26 lượt xem 📅 06/01/2026
Trong một thí nghiệm, bạn Mai thả một khối sắt hình trụ có chiều cao h = 6,5 cm, bán kính đáy r = 3,5 cm vào một bình chia độ đang chứa 500 ml nước. Sau khi khối sắt chìm hẳn xuống, bạn Mai thấy mực nước trong bình tăng lên vạch 750ml. Biết 1 ml = 1 cm3. HĐ3 Trả lời câu hỏi Hoạt động 3 trang 65 SGK Toán 9 Cùng khám pháTrong một thí nghiệm, bạn Mai thả một khối sắt hình trụ có chiều cao h = 6,5 cm, bán kính đáy r = 3,5 cm vào một bình chia độ đang chứa 500 ml nước. Sau khi khối sắt chìm hẳn...

Trong một thí nghiệm, bạn Mai thả một khối sắt hình trụ có chiều cao h = 6,5 cm, bán kính đáy r = 3,5 cm vào một bình chia độ đang chứa 500 ml nước. Sau khi khối sắt chìm hẳn xuống, bạn Mai thấy mực nước trong bình tăng lên vạch 750ml. Biết 1 ml = 1 cm3.


HĐ3

Trả lời câu hỏi Hoạt động 3 trang 65 SGK Toán 9 Cùng khám phá

Trong một thí nghiệm, bạn Mai thả một khối sắt hình trụ có chiều cao h = 6,5 cm, bán kính đáy r = 3,5 cm vào một bình chia độ đang chứa 500 ml nước. Sau khi khối sắt chìm hẳn xuống, bạn Mai thấy mực nước trong bình tăng lên vạch 750ml. Biết 1 ml = 1 cm3.

a) Dựa vào mực nước tăng lên trong bình, hãy tính thể tích của khối sắt.

b) Gọi S là diện tích đáy của khối sắt. So sánh tích S.h với kết quả ở câu a và rút ra nhận xét.

Phương pháp giải:

Dựa vào diện tích đường tròn: S = \(\pi {r^2}\) rồi so sánh với câu a.

Lời giải chi tiết:

a) Sự chênh lệch mực nước giữa trước và sau khi cho khối sắt là:

750 – 500 = 250 ml = 250 cm3

Thể tích của khối sắt là 250 cm3.

a) Diện tích đáy của khối sắt là:

S = \(\pi .3,{5^2} = 12,25\) cm2

Suy ra S.h = \(12,25\pi \).6,5 \( \approx 250\) bằng với kết quả câu a

Nhận xét: Thể tích của hình trụ bằng diện tích đáy nhân chiều cao.

LT3

Trả lời câu hỏi Luyện tập 3 trang 66 SGK Toán 9 Cùng khám phá

Tính chiều cao và thể tích của một hình trụ có bán kính đáy bằng 5 cm và diện tích xung quanh bằng \(30\pi \)cm2.

Phương pháp giải:

Diện tích xung quanh hình trụ \({S_{xq}} = 2\pi rh\) (với r là bán kính đáy và h là chiều cao hình trụ).

Dựa vào thể tích hình trụ: V = \(\pi {r^2}h\) (với r là bán kính đáy và h là chiều cao hình trụ)

Lời giải chi tiết:

Ta có: \({S_{xq}} = 2\pi rh = 30\pi \)

suy ra h = \(\frac{{30\pi }}{{2\pi .5}} = 3\) cm.

Thể tích hình trụ là:

V = \(\pi {r^2}h = \pi {.5^2}.3 = 75\pi \) (cm3).

VD2

Trả lời câu hỏi Vận dụng 2 trang 66 SGK Toán 9 Cùng khám phá

Tính thể tích nhựa cần dùng để sản xuất đoạn ống nhựa có kích thức như Hình 9.9.

Phương pháp giải:

Dựa vào thể tích hình trụ: V = \(\pi {r^2}h\) (với r là bán kính đáy và h là chiều cao hình trụ)

Lời giải chi tiết:

Thể tích cả đoạn ống nhựa là:

V = \(\pi {r^2}h = \pi .1,{5^2}.4 = 9c{m^3}\)

Thể tích lõi trong ống nhựa là:

Vlõi \( = \pi {r^2}h = \pi .{\left( {\frac{{3 - 2.0,3}}{2}} \right)^2}.4 = 5,76c{m^3}\)

Thể tích nhựa cần dùng là:

Vnhựa = 9 – 5,76 = 3,24 cm3.

📚 Xem toàn bộ khóa học