Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Đường thẳng song song với mặt phẳng và cách giải bài tập (hay, chi tiết)

by Tranducdoan
07/02/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Đường thẳng song song với mặt phẳng và cách giải bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 11.

Mục Lục Bài Viết

  1. Đường thẳng song song với mặt phẳng và cách giải bài tập

Đường thẳng song song với mặt phẳng và cách giải bài tập

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

I. Lý thuyết ngắn gọn

1. Vị trí tương đối của đường thẳng và mặt phẳng

Cho đường thẳng a và mặt phẳng (P). Căn cứ vào số điểm chung của đường thẳng và mặt phẳng ta có ba trường hợp sau:

a. Đường thẳng a và mặt phẳng (P) không có điểm chung, tức là:

a ∩ (P) = φ ⇔ a // (P)

b. Đường thẳng a và mặt phẳng (P) chỉ có một điểm chung, tức là:

a ∩ (P) = A ⇔ a cắt (P) tại A

c. Đường thẳng a và mặt phẳng (P) có hai điểm chung, tức là:

a ∩ (P) = {A,B} ⇔ a ⊂ (P) (Đường thẳng a nằm trong mặt phẳng (P))

2. Điều kiện để một đường thẳng song song với một mặt phẳng

Nhận xét: Cho đường thẳng b nằm trong mặt phẳng (P) và một đường thẳng a song song với b. Lấy một điểm I tùy ý trên a. Khi đó:

– Nếu I thuộc (P) thì a nằm trong (P)

– Nếu I không thuộc (P) thì a song song với (P)

Định lí 1: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nào đó trong (P) thì a song song với (P).

3. Tính chất

Định lí 2: Nếu đường thẳng a song song với mặt phẳng (P) thì mọi mặt phẳng (Q) chứa a mà cắt (P) thì cắt theo giao tuyến song song với a.

Hệ quả 1: Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng.

Hệ quả 2: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó.

Hệ quả 3: Nếu a và b là hai đường thẳng chéo nhau thì có duy nhất một mặt phẳng chứa a và song song với b.

II. Các dạng bài tập

Dạng 1: Chứng minh đường thẳng song song với mặt phẳng

Phương pháp giải: Để chứng minh đường thẳng d song song với mặt phẳng (α), ta chứng minh d không nằm trong (α) và song song với đường thẳng a chứa trong (α)

Tức:

Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. Trên BC lấy M sao cho MB = 2MC. Chứng minh MG // (ACD).

Lời giải:

Gọi I là trung điểm AD.

Trong tam giác CBI có: (theo giả thuyết và tính chất trọng tâm)

Nên MG // CI (Định lý Ta – lét)

Mà CI nằm trong mặt phẳng (ACD)

Vậy MG // (ACD).

Ví dụ 2: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC.

a. Chứng minh MN // (BCD).

b. Gọi d là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mặt phẳng (ABC).

Lời giải:

a. Ta có: MN là đường trung bình của tam giác ABC

Suy ra: MN // BC

Mà BC nằm trong mặt phẳng (BCD)

Vậy: MN // (BCD).

b. Vì MN // (BCD)

Nên (DMN) đi qua MN cắt (BCD) theo giao tuyến d đi qua D và song song với MN.

Mà MN nằm trong (ABC)

Do đó: d // (ABC).

Dạng 2: Dựng thiết diện song song với một đường thẳng

Phương pháp giải: Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.

Nghĩa là:

Thiết diện cắt bởi một mặt phẳng chứa một đường thẳng song song với đường thẳng đã cho trước được xác định bằng cách phối hợp hai cách xác định giao tuyến đã biết.

Ví dụ minh họa

Ví dụ 3: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm của AC và BD, M là trung điểm SA. Tìm thiết diện của mặt phẳng (α) với hình chóp S.ABCD nếu (α) qua M và song song với SC và AD.

Lời giải:

Vì (α) // AD nên (α) cắt hai mặt phẳng (SAD) và (ABCD) theo hai giao tuyến song song với AD.

Tương tự (α) // SC nên (α) cắt hai mặt phẳng (SAC) và (SCD) theo hai giao tuyến song song với SC.

Có: OM // SC (đường trung bình tam giác SAC)

Qua O kẻ đường thẳng song song với AD, cắt AB và CD tại Q và P

Qua M kẻ đường thẳng song song với AD cắt SD tại N

Theo nhận xét trên ta có: MN // PQ // SC

Vậy thiết diện là hình thang MNPQ.

Ví dụ 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA.

Lời giải:

Qua M vẽ đường thẳng song song với BD cắt AD tại N và cắt AC tại I

Qua M, I, N vẽ các đường thẳng song song với SA lần lượt cắt SB, SC, SD tại R, Q, P.

Thiết diện là ngũ giác MNPQR

III. Bài tập áp dụng

1. Tự luận

Bài 1: Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng đi qua O, song song với AB và SC. Thiết diện đó là hình gì?

Bài 2: Cho tứ diện ABCD. Lấy M trên AB. Một mặt phẳng đi qua M, song song với AC và BD. Thiết diện của tứ diện cắt bởi mặt phẳng đó là hình gì ?

Bài 3: Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm các tam giác ABD và BCD. Chứng minh MN // (ACD) và MN // (ABC).

Bài 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAB và I là trung điểm AB. M trên AD sao cho AD = 3AM. Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh NG // (SCD).

Bài 5: Cho tứ diện ABCD. Gọi E, F lần lượt là trọng tâm các tam giác ACD và BCD. Chứng minh EF song song với các mặt phẳng (ABC) và (ABD).

2. Trắc nghiệm

Bài 1: Cho hai đường thẳng a, b chéo nhau. Hỏi có bao nhiêu mặt phẳng chứa a và song song với b? A. 0

B. 1

C. 2

D. Vô số

Bài 2: Cho hai đường thẳng a và b cùng song song với mặt phẳng (P). Khẳng định nào không sai?

A. a // b

B. a và b chéo nhau

C. a và b cắt nhau

D. Chưa đủ điều kiện để kết luận vị trí tương đối của a và b

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm SC. Khẳng định nào sai?

A. IO // mp (SAB)

B. IO // mp (SAD)

C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác

D. (IBD) ∩ (SAC) = IO

Bài 4: Cho tứ diện ABCD. Gọi E, F là trọng tâm các tam giác BCD và ACD. Khẳng định nào sai?

A. EF // (ABD)

B. EF // (ABC)

C. BE, AF và CD đồng quy

D.

Bài 5: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (α) cắt SC tại K. Khẳng định nào sau đây là khẳng định đúng?

A. SK = 2KC

B. SK = KC

C. SK = 3KC

D. 2SK = KC

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm phương pháp giải các dạng bài tập Toán lớp 11 có đáp án, hay khác:

  • Hai mặt phẳng song song và cách giải bài tập
  • Quy tắc đếm và cách giải bài tập
  • Hoán vị, Chỉnh hợp, Tổ hợp và cách giải bài tập
  • Nhị thức Niu tơn và cách giải các dạng bài tập
  • Cách giải phương trình, bất phương trình tổ hợp hay, chi tiết
Previous Post

Con Lắc Đơn Là Gì? Lý Thuyết, Công Thức Và Bài Tập Con Lắc Đơn

Next Post

Kiếp nạn thứ 82

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

30+ Đề thi Cuối kì 2 Toán 11 cấu trúc mới (có đáp án)

by Tranducdoan
07/02/2026
0
0

Đề thi Cuối kì 2 Toán 11 cấu trúc mới trắc nghiệm đúng - sai, trả lời ngắn cả ba...

Đề cương ôn tập Giữa kì 1 Toán 7 Kết nối tri thức

by Tranducdoan
07/02/2026
0
0

Bộ đề cương ôn tập Giữa kì 1 Toán 7 Kết nối tri thức với bài tập trắc nghiệm, tự...

Đầy đủ lý thuyết và bài tập Toán tập hợp lớp 10

by Tranducdoan
07/02/2026
0
0

1. Lý thuyết về tập hợp lớp 10 1.1. Định nghĩa phần tử - tập hợp lớp 10 Theo chương...

Quy đồng mẫu thức nhiều phân thức lớp 8 (cách giải + bài tập)

by Tranducdoan
07/02/2026
0
0

Bài viết phương pháp giải bài tập Quy đồng mẫu thức nhiều phân thức lớp 8 chương trình sách mới...

Load More
Next Post

Kiếp nạn thứ 82

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Tìm hiểu các giá trị hiệu dụng của dòng điện xoay chiều chính xác nhất

07/02/2026

Giải Công nghệ 12 trang 111 Cánh diều

07/02/2026

Dàn ý tả cảnh hoàng hôn trên quê hương em

07/02/2026
Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.