Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Các dạng bài tập Đường thẳng vuông góc với mặt phẳng chọn lọc, có lời giải

by Tranducdoan
20/02/2026
in Toán tổng hợp
0
Đánh giá bài viết

Phần Đường thẳng vuông góc với mặt phẳng Toán lớp 11 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có lời giải. Vào Xem chi tiết để theo dõi các dạng bài Đường thẳng vuông góc với mặt phẳng hay nhất tương ứng.

  • Câu hỏi trắc nghiệm lí thuyết đường thẳng vuông góc với mặt phẳng Xem chi tiết
  • Chứng minh đường thẳng vuông góc với mặt phẳng Xem chi tiết
  • Tính góc giữa đường thẳng và mặt phẳng Xem chi tiết
  • Cách làm bài tập về tìm thiết diện Xem chi tiết

Mục Lục Bài Viết

  1. Các dạng bài tập Đường thẳng vuông góc với mặt phẳng chọn lọc, có lời giải
    1. Cách chứng minh đường thẳng vuông góc với mặt phẳng
    2. A. Phương pháp giải
    3. B. Ví dụ minh họa
    4. Cách tính góc giữa đường thẳng và mặt phẳng
    5. A. Phương pháp giải
    6. B. Ví dụ minh họa
    7. Cách tìm thiết diện trong hình học không gian
    8. A. Phương pháp giải
    9. B. Ví dụ minh họa
    10. Bài tập tự luyện

Các dạng bài tập Đường thẳng vuông góc với mặt phẳng chọn lọc, có lời giải

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Cách chứng minh đường thẳng vuông góc với mặt phẳng

A. Phương pháp giải

* Cách chứng minh đường thẳng vuông góc với mặt phẳng cực hay

Muốn chứng minh đương thẳng d ⊥ (α) ta có thể dùng môt trong hai cách sau.

Cách 1. Chứng minh d vuông góc với hai đường thẳng a; b cắt nhau trong (α) .

Cách 2. Chứng minh d vuông góc với đường thẳng a mà a vuông góc với (α) .

Cách 3. Chứng minh d vuông góc với (Q) và (Q) // (P).

* Chứng minh hai đường thẳng vuông góc

– Để chứng minh d ⊥ a, ta có thể chứng minh bởi một trong các cách sau:

+ Chứng minh d vuông góc với (P) và (P) chứa a.

+ Sử dụng định lí ba đường vuông góc.

+ Sử dụng các cách chứng minh đã biết ở phần trước.

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp S. ABC có SA ⊥ (ABC) và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?

A. SA ⊥ BC

B. AH ⊥ BC

C. AH ⊥ AC

D. AH ⊥ SC

Hướng dẫn giải

Chọn C

Vậy câu C sai.

Ví dụ 2: Cho tứ diện SABC có ABC là tam giác vuông tại B và SA ⊥ (ABC). Khẳng định nào sau đây là đúng nhất.

Hướng dẫn giải

Chọn A

Ví dụ 3: Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây đúng?

A. AB ⊥ (ABC)

B. AB ⊥ BD

C. AB ⊥ (ABD)

D. BC ⊥ AD

Hướng dẫn giải

Chọn D

Gọi E là trung điểm của BC.

Tam giác DCB cân tại D có DE là đường trung tuyến nên đồng thời là đường cao: DE ⊥ BC.

Tam giác ABC cân tại A có AE là đường trung tuyến nên đồng thời là đường cao : AE ⊥ BC

Khi đó ta có

Cách tính góc giữa đường thẳng và mặt phẳng

A. Phương pháp giải

Để xác định góc giữa đường thẳng a và mặt phẳng (α) ta thực hiện theo các bước sau:

+ Bước 1: Tìm giao điểm O của đường thẳng a và (α)

+ Bước 2: Dựng hình chiếu A’ của một điểm A ∈ a xuống (α)

+ Bước 3: Góc ∠AOA’ = φ chính là góc giữa đường thẳng a và (α)

Lưu ý:

– Để dựng hình chiếu A’ của điểm A trên (α) ta chọn một đường thẳng b ⊥ (α) khi đó AA’ // b.

– Để tính góc φ ta sử dụng hệ thức lượng trong tam giác vuông OAA’.

B. Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?

A. Góc giữa AC và (BCD) là góc ACB

B. Góc giữa AD và (ABC) là góc ADB

C. Góc giữa AC và (ABD) là góc ACB

D. Góc giữa CD và (ABD) là góc CBD

Hướng dẫn giải

Chọn A.

Ví dụ 2: Cho tam giác ABC vuông cân tại A và BC = a. Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = (√6)a/2 . Tính số đo góc giữa đường thẳng SA và (ABC) .

A. 30° B. 45° C. 60° D. 90°

Hướng dẫn giải

Chọn D

Từ giả thiết suy ra:

SA ⊥ (ABC) ⇒ (SA, (ABC)) = 90°

Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và (ABC).

A. 30° B. 45° C. 60° D. 75°

Hướng dẫn giải

Chọn C

Gọi H là trung điểm của BC suy ra

AH = BH = CH = (1/2)BC = a/2

Cách tìm thiết diện trong hình học không gian

A. Phương pháp giải

Để xác định thiết diện của mặt phẳng (α) đi qua điểm O và vuông góc với đường thẳng d với một hình chóp ta thực hiện theo một trong hai cách sau:

Cách 1. Tìm tất cả các đường thẳng vuông góc với d, khi đó (α) sẽ song song hoặc chứa các đường thẳng này và ta chuyển về dạng thiết diện song song như đã biết ở chương II.

Cách 2. Ta dựng mặt phẳng (α) như sau:

Dựng hai đường thẳng a; b cắt nhau cùng vuông góc với d trong đó có một đường thẳng đi qua O, khi đó (α) chính là mặt phẳng (a; b)

B. Ví dụ minh họa

Ví dụ 1: Cho hình chóp S.ABCD có đáy ABC là tam giác đều, SA ⊥ (ABC). Gọi (P) là mặt phẳng qua B và vuông góc với SC. Thiết diện của (P) và hình chóp S.ABC là:

A. Hình thang vuông.

B. Tam giác đều.

C. Tam giác cân.

D. Tam giác vuông.

Hướng dẫn giải

Gọi I là trung điểm của CA, kẻ IH ⊥ SC.

Ta có BI ⊥ AC, BI ⊥ SA ⇒ BI ⊥ SC

Do đó SC ⊥ (BIH) hay thiết diện là tam giác BIH.

Mà BI ⊥ (SAC) nên BI ⊥ IH hay thiết diện là tam giác vuông.

Chọn D

Ví dụ 2: Cho tứ diện đều ABCD cạnh a = 12, gọi (P) là mặt phẳng qua B và vuông góc với AD. Thiết diện của (P) và hình chóp có diện tích bằng

A. 36√2 B. 40 C. 36√3 D. 36

Hướng dẫn giải

Gọi E là trung điểm AD

Do tam giác ABD đều nên BE ⊥ AD (1)

Do tam giác ACD đều nên CE ⊥ AD (2)

Từ (1) và (2) suy ra: AD ⊥ (BEC)

⇒ Thiết diện là tam giác BCE. Gọi F là trung điểm của BC.

Chọn A

Ví dụ 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , cạnh bên SA ⊥ (ABC) Mặt phẳng (P) đi qua trung điểm M của AB và vuông góc với SB cắt AC, SC, SB lần lượt tại N, P, Q . Tứ giác MNPQ là hình gì ?

A. Hình thang vuông

B. Hình thang cân

C. Hình bình hành

D. Hình chữ nhật

Hướng dẫn giải

Vậy thiết diện là hình thang MNPQ vuông tại N

Chọn A

Bài tập tự luyện

Bài 1. Cho tứ diện ABCD có hai mặt và ABC và BCD là hai tam giác cân có chung đáy BC.

Điểm I là trung điểm của cạnh BC.

a) Chứng minh BC ⊥ (ADI).

b) Gọi AH là đường cao trong tam giác ADI. Chứng minh rằng AH ⊥ (BCD).

Bài 2. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD).

Gọi M và N lần lượt là hình chiếu của điểm A trên các đường thẳng SB và SD.

a) Chứng minh rằng BC ⊥ (SAB), CD ⊥ (SAD).

b) Chứng minh rằng AM ⊥ (SBC); AN ⊥ (SCD).

c) Chứng minh rằng SC ⊥ (AMN) và MN // BD.

d) Gọi K là giao điểm của SC với mặt phẳng (AMN). Chứng minh rằng tứ giác AMKN có hai đường chéo vuông góc.

Bài 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt bên SAB là tam giác đều, SCD là tam giác vuông cân đỉnh S. Gọi I, J lần lượt là trung điểm của AB và CD.

a) Tính các cạnh của tam giác SIJ, suy ra tam giác SIJ vuông.

b) Chứng minh rằng SI ⊥ (SCD); SJ ⊥ (SAB).

c) Gọi H là hình chiếu của S lên IJ, chứng minh rằng SH ⊥ (ABCD).

Bài 4. Cho hình chóp S.ABC có SA ⊥ (ABC), các tam giác ABC và SBC là các tam giác nhọn. Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:

a) AH, SK, BC đồng quy.

b) SC ⊥ (BHK)

c) HK ⊥ (SBC).

Bài 5. Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và có SA = SC, SB = SD.

a) Chứng minh rằng SO ⊥ (ABCD).

b) Gọi I, K lần lượt là trung điểm của BA và BC. Chứng minh rằng IK ⊥ (SBD) và IK ⊥ SD.

(199k) Xem Khóa học Toán 11 KNTTXem Khóa học Toán 11 CDXem Khóa học Toán 11 CTST

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Chủ đề: Hai đường thẳng vuông góc
  • Chủ đề: Hai mặt phẳng vuông góc
  • Chủ đề: Khoảng cách
Previous Post

Tam giác. Diện tích hình tam giác

Next Post

Câu 1: Hãy nêu tầm quan trọng của nước ngầm và băng hoà

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Vecto Trong Không Gian Lớp 11: Lý Thuyết Và Bài Tập Trắc Nghiệm

by Tranducdoan
20/02/2026
0
0

1. Vecto trong không gian là gì? Một đoạn thẳng có hướng được gọi là vecto trong không gian với...

Bài 2 trang 123 Toán 9 Tập 1 Cánh diều

by Tranducdoan
20/02/2026
0
0

Giải Toán 9 Bài 5: Độ dài cung tròn, diện tích hình quạt tròn, diện tích hình vành khuyên -...

Bổ nhiệm ông Lê Văn Đoàn làm Giám đốc Công ty Điện lực Chợ Lớn

by Tranducdoan
20/02/2026
0
0

Theo đó, ông Lê Văn Đoàn sẽ nhận nhiệm vụ là Giám đốc Công ty Điện lực Chợ Lớn thay...

30+ Đề thi Giữa kì 2 Toán 9 cấu trúc mới năm 2025 (có đáp án)

by Tranducdoan
20/02/2026
0
0

Trọn bộ 30 đề thi Giữa kì 2 Toán 9 năm 2026 theo cấu trúc mới sách mới Chân trời...

Load More
Next Post

Câu 1: Hãy nêu tầm quan trọng của nước ngầm và băng hoà

Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88 sàn forex uy tín 789bet sumclub game bài đổi thưởng topclub 789p
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.