Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

40 Bài tập Phân tích đa thức thành nhân tử lớp 8 (có đáp án)

by Tranducdoan
07/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết 40 Bài tập Phân tích đa thức thành nhân tử có đáp án gồm các dạng bài tập về Phân tích đa thức thành nhân tử lớp 8 như phương pháp đặt nhân tử chung, phương pháp dùng hằng đẳng thức, phương pháp nhóm hạng tử từ cơ bản đến nâng cao giúp học sinh lớp 8 biết cách làm bài tập Phân tích đa thức thành nhân tử.

Mục Lục Bài Viết

  1. 40 Bài tập Phân tích đa thức thành nhân tử lớp 8 (có đáp án)
    1. Bài tập Phân tích đa thức thành nhân tử
    2. Bài tập Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
    3. Bài tập Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
    4. Bài tập Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

40 Bài tập Phân tích đa thức thành nhân tử lớp 8 (có đáp án)

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

Bài tập Phân tích đa thức thành nhân tử

Bài 1: Đa thức 4x( 2y – z ) + 7y( z – 2y ) được phân tích thành nhân tử là ?

A. ( 2y + z )( 4x + 7y )

B. ( 2y – z )( 4x – 7y )

C. ( 2y + z )( 4x – 7y )

D. ( 2y – z )( 4x + 7y )

Lời giải:

Ta có 4x( 2y – z ) + 7y( z – 2y ) = 4x( 2y – z ) – 7y( 2y – z ) = ( 2y – z )( 4x – 7y ).

Chọn đáp án B.

Bài 2: Đa thức x3( x2 – 1 ) – ( x2 – 1 ) được phân tích thành nhân tử là ?

A. ( x – 1 )2( x + 1 )( x2 + x + 1 )

B. ( x3 – 1 )( x2 – 1 )

C. ( x – 1 )( x + 1 )( x2 + x + 1 )

D. ( x – 1 )2( x + 1 )( x2 + x + 1 )

Lời giải:

Ta có x3( x2 – 1 ) – ( x2 – 1 ) = ( x2 – 1 )( x3 – 1 ) = ( x – 1 )( x + 1 )( x – 1 )( x2 + x + 1 )

= ( x – 1 )2( x + 1 )( x2 + x + 1 )

Chọn đáp án D.

Sai lầm: Nhiều em học sinh mắc phải sai lầm là nhóm nhân tử ( x2 – 1 )( x3 – 1 ) mà không nhận ra trong hai đa thức ( x2 – 1 ) và ( x3 – 1 ) có nhân tử chung là ( x – 1 ) để đặt làm nhân tử chung. Dẫn đến nhiều em sẽ chọn đáp án B.

Bài 3: Tìm giá trị y thỏa mãn 49( y – 4 )2 – 9( y + 2 )2 = 0 ?

Lời giải:

Ta có 49( y – 4 )2 – 9( y + 2 )2 = 0

⇔ 49( y2 – 8y + 16 ) – 9( y2 + 4y + 4 ) = 0

⇔ 49y2 – 392y + 784 – 9y2 – 36y – 36 = 0

⇔ 40y2 – 428y + 748 = 0 ⇔ 4( 10y2 – 107y + 187 ) = 0

⇔ 4[ ( 10y2 – 22y ) – ( 85y – 187 ) ] = 0 ⇔ 4[ 2y( 5y – 11 ) – 17( 5y – 11 ) ] = 0

⇔ 4( 5y – 11 )( 2y – 17 ) = 0

Chọn đáp án A.

Bài 4: Tính giá trị của biểu thức A = x2 – y2 + 2y – 1 với x=3 và y=1.

A. A = – 9. B. A = 0.

C. A = 9. D. A = – 1.

Lời giải:

Ta có A = x2 – y2 + 2y – 1 = x2 – ( y2 – 2y + 1 )

= x2 – ( y – 1 )2 = ( x – y + 1 )( x + y – 1 ) (hằng đẳng thức a2 – b2 = ( a – b )( a + b ) ).

Khi đó với x = 3 và y = 1, ta có A = ( 3 – 1 + 1 )( 3 + 1 – 1 ) = 3.3 = 9.

Chọn đáp án C.

Bài 5: Phân tích đa thức thành nhân tử: x3 + x2 + y3 + xy

A. (x + y).(x2 – xy + y2 + x)

B. (x – y).(x2 + xy + y2 – x)

C. (x + y).(x2 + xy + y2 – x)

D. (x – y).(x2 + xy – y2 + x)

Lời giải:

Ta có: x3 + x2 + y3 + xy = (x3 + y3) + (x2 + xy)

= (x + y). (x2 – xy + y2) + x.(x + y)

= (x + y). (x2 – xy + y2 + x)

Chọn đáp án A

Bài 6: Phân tích đa thức thành nhân tử: x3 – 9x + 2x2y + xy2

A. x. (x – y + 3).(x + y – 3)

B. x. (x + y + 3).(x + y – 3)

C. x. (x – y + 3).(x – y – 1)

D. x. (x + y + 1).(x – y – 3)

Lời giải:

Ta có: x3 – 9x + 2x2y + xy2

= x.(x2 – 9 + 2xy + y2)

= x.[(x2 + 2xy + y2) – 9]

= x.[(x + y)2 – 32]

= x.(x + y + 3).(x + y – 3)

Chọn đáp án B

Bài 7: Phân tích đa thức thành nhân tử: x5 + 4x

A. x.(x2 + 2 ).(x2 – 2).

B. x.(x2 + 2 + x).(x2 + 2- x).

C. x.(x2 + 2 + 2x).(x2 + 2 – 2x).

D. x.(x4 + 4)

Lời giải:

Ta có:

x5 + 4x = x.(x4 + 4)

= x.[(x4 + 4×2 + 4) – 4×2].

= x.[(x2 + 2)2 – (2x)2].

= x.(x2 + 2 + 2x).(x2 + 2 – 2x).

Chọn đáp án C

Bài 8: Phân tích đa thức thành nhân tử A = x2 – 5x + 4

A. (x – 4).(x – 1)

B. (x – 4).(x + 1)

C. (x + 4).(x + 1)

D. Đáp án khác

Lời giải:

Ta có:

A = x2 – 5x + 4 = x2 – x – 4x + 4

A = (x2 – x ) – (4x – 4)

A = x(x – 1) – 4(x – 1)

A = (x – 4). (x – 1)

Chọn đáp án A

Bài 9: Phân tích đa thức thành nhân tử:

Lời giải:

Chọn đáp án D

Bài 10: Phân tích đa thức thành nhân tử: 2x2y + 2x + 4xy + x2 + 2y + 1

A. (x + 1)2. (2y + 1).

B. (x – 1)2. (2y – 1).

C. (x2 + x + 1). (2y + 1).

D. Đáp án khác

Lời giải:

Ta có:

2x2y + 2x + 4xy + x2 + 2y + 1

= (2x2y + 4xy + 2y ) + (x2 + 2x + 1 )

= 2y.(x2 + 2x + 1) + (x2 + 2x + 1)

= 2y(x + 1)2 + (x + 1)2

= (x + 1)2. (2y + 1).

Chọn đáp án A

Bài tập Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bài 11: Tìm nhân tử chung của biểu thức 5×2(5 – 2x) + 4x – 10 có thể là

A. 5 – 2x

B. 5 + 2x

C. 4x – 10

D. 4x + 10

Lời giải

Ta có 5×2(5 – 2x) + 4x – 10 = 5×2(5 – 2x) – 2(-2x + 5)

= 5×2(5 – 2x) – 2(5 – 2x)

Nhân tử chung là 5 – 2x

Đáp án cần chọn là: A

Bài 12: Nhân tử chung của biểu thức 30(4 – 2x)2 + 3x – 6 có thể là

A. x + 2

B. 3(x – 2)

C. (x – 2)2

D. (x + 2)2

Lời giải

Ta có

30(4 – 2x)2 + 3x – 6 = 30(2x – 4)2 + 3(x – 2)

= 30.22(x – 2) + 3(x – 2)

= 120(x – 2)2 + 3(x – 2)

= 3(x – 2)(40(x – 2) + 1) = 3(x – 2)(40x – 79)

Nhân tử chung có thể là 3(x – 2)

Đáp án cần chọn là: B

Bài 13: Tìm giá trị x thỏa mãn 3x(x – 2) – x + 2 = 0

Lời giải

Ta có:

Đáp án cần chọn là: D

Bài 14: Tìm giá trị x thỏa mãn 2x(x – 3) – (3 – x) = 0

Lời giải

Ta có:

Đáp án cần chọn là: A

Bài 15: Có bao nhiêu giá trị x thỏa mãn 5(2x – 5) = x(2x – 5)

A. 1

B. 2

C. 3

D. 0

Lời giải

Ta có:

Đáp án cần chọn là: B

Bài 16: Có bao nhiêu giá trị x thỏa mãn x2(x – 2) = 3x(x – 2)

A. 1

B. 2

C. 3

D. 0

Lời giải

Ta có:

Vậy có 3 giá trị x thỏa mãn điều kiện đề bài x = 2; x = 0; x = 3.

Đáp án cần chọn là: C

Bài 17: Cho x1 và x2 là hai giá trị thỏa mãn x(5 – 10x) – 3(10x – 5) = 0. Khi đo x1 + x2 bằng

Lời giải

Ta có:

Đáp án cần chọn là: C

Bài 18: Cho x1 và x2 (x1 > x2) là hai giá trị thỏa mãn x(3x – 1) – 5(1 – 3x) = 0. Khi đó 3×1 – x2 bằng

A. -4

B. 4

C. 6

D. -6

Lời giải

Ta có:

Đáp án cần chọn là: C

Bài 19: Cho x0 là giá trị lớn nhất thỏa mãn 4×4 – 100×2 = 0. Chọn câu đúng.

A. x0 < 2

B. x0 < 0

C.x0 > 3

D. 1 < x0 < 5

Lời giải

Ta có:

Do đó x0 = 5 ⇒ x0 > 3

Đáp án cần chọn là: C

Bài 20: Cho x0 là giá trị lớn nhất thỏa mãn 25×4 – x2 = 0. Chọn câu đúng.

A. x0 < 1

B. x0 = 0

C. x0 > 3

D. 1 < x0 < 2

Lời giải

Ta có:

Đáp án cần chọn là: A

Bài tập Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Bài 21: Gọi x1; x2; x3 là các giá trị thỏa mãn 4(3x – 5)2 – 9(9×2 – 25)2 = 0. Khi đó x1 + x2 + x3 bằng

Lời giải

Ta có 4(3x – 5)2 – 9(9×2 – 25)2 = 0

⇔ 4(3x – 5)2 – 9[(3x)2 – 52]2 = 0

⇔ 4(3x – 5)2 – 9[(3x – 5)(3x + 5)]2 = 0

⇔ 4(3x – 5)2 – 9(3x – 5)2(3x + 5)2 = 0

⇔ (3x – 5)2[4 – 9(3x + 5)2] = 0

⇔ (3x – 5)2[4 – (3(3x + 5))2] = 0

⇔ (3x – 5)2(22 – (9x + 15)2) = 0

⇔ (3x – 5)2(2 + 9x + 15)(2 – 9x – 15) = 0

⇔ (3x – 5)2(9x + 17)(-9x – 13) = 0

Đáp án cần chọn là: C

Bài 22: Cho các phương trình (x + 2)3 + (x – 3)3 = 0 (1) ; (x2 + x – 1)2 + 4×2 + 4x = 0 (2). Chọn câu đúng

A. Phương trình (1) có hai nghiệm, phương trình (2) vô nghiệm

B. Phương trình (1) có 1 nghiệm, phương trình (2) có 2 nghiệm

C. Phương trình (1) vô nghiệm, phương trình (2) vô nghiệm

D. Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiêm

Lời giải

Xét phương trình (1) ta có:

  

Xét phương trình (2) ta có (x2 + x – 1)2 + 4×2 + 4x = 0 (2)

  

Vì > 0, Ɐx nên phương trình (2) vô nghiệm

Vậy Phương trình (1) có 1 nghiệm, phương trình (2) vô nghiêm

Đáp án cần chọn là: D

Bài 23: Cho x + n = 2(y – m), khi đó giá trị của biểu thức A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2 bằng

A. A = 1

B. A = 0

C. A = 2

D. Chưa đủ dữ kiện để tính

Lời giải

Ta có: A = x2 – 4xy + 4y2 – 4m2 – 4mn – n2

= x2 – 2x.2y + (2y)2 – (4m2 + 4mn + n2)

= (x – 2y)2 – (2m + n)2

= (x – 2y + 2m + n)(x – 2y – 2m – n)

Ta có: x + n = 2(y – m) ⇔ x + n = 2y – 2m

⇔ x + n = 2y – 2m

⇔ x – 2y +n + 2m = 0

Thay x – 2y + n + 2m = 0 vào A ta được

A = 0.(x – 2y – 2m – n) = 0

Vậy A = 0

Đáp án cần chọn là: B

Bài 24: Cho x – 4 = -2y. Khi đó giá trị của biểu thức M = (x + 2y – 3)2 – 4(x + 2y – 3) + 4 bằng

A. M = 0

B. M = -1

C. M = 1

D. Đáp án khác

Lời giải

Ta có: M = (x + 2y – 3)2 – 4(x + 2y – 3) + 4

= (x + 2y – 3)2 – 2(x + 2y – 3).2 + 22

= (x + 2y – 3 – 2)2 = (x + 2y – 5)2

Ta có: x – 4 = -2y ⇔ x + 2y = 4

Thay x + 2y = 4 vào M ta được

M = (4 – 5)2 = (-1)2 = `

Vậy M = 1

Đáp án cần chọn là: C

Bài 25: Cho 9a2 – (a – 3b)2 = (m.a + n.b)(4a – 3b) với m, n Є R. Khi đó, giá trị của m và n là

A. m = -2; n = -3

B. m = 3; n = 2

C. m = 3; n = -4

D. m = 2; n = 3

Lời giải

Ta có: 9a2 – (a – 3b)2 = (3a)2 – (a – 3b)2 = (3a + a – 3b)(3a – a + 3b)

= (4a – 3b)(2a + 2b)

Suy ra m = 2; n = 3

Đáp án cần chọn là: D

Bài 26: Đa thức 4b2c2 – (c2 + b2 – a2)2 được phân tích thành

A. (b + c + a)(b + c – a)(a + b – c)(a – b + c)

B. (b + c + a)(b – c – a)(a + b – c)(a – b + c)

C. (b + c + a)(b + c – a)(a + b – c)2

D. (b + c + a)(b + c – a)(a + b – c)(a – b – c)

Lời giải

Ta có 4b2c2 – (c2 + b2 – a2)2

= (2bc)2 – (c2 + b2 – a2)2

= (2bc + c2 + b2 – a2)(2bc – c2 – b2 + a2)

= [(b + c)2 – a2][a2 – (b2 – 2bc + c2)]

= [(b + c)2 – a2][a2 – (b – c)2]

= (b + c + a)(b + c – a)(a + b – c)(a – b + c)

Đáp án cần chọn là: A

Bài 27: Đa thức x6 – y6 được phân tích thành

A. (x + y)2(x2 – xy + y2)(x2 + xy + y2)

B. (x + y)(x2 – 2xy + y2)(x – y)(x2 + 2xy + y2)

C. (x + y)(x2 – xy + y2)(x – y)(x2 + xy + y2)

D. (x + y)(x2 + 2xy + y2)(y – x)(x2 + xy + y2)

Lời giải

Ta có

x6 – y6 = (x3)2 – (y3)2 = (x3 + y3)(x3 – y3)

= (x + y)(x2 – xy + y2)(x – y)(x2 + xy + y2)

Đáp án cần chọn là: C

Bài 28: Tính giá trị biểu thức P = x3 – 3×2 + 3x với x = 101

A. 1003+ 1

B. 1003 – 1

C. 1003

D. 1013

Lời giải

Ta có

P = x3 – 3×2 + 3x – 1 + 1 = (x – 1)3 + 1

Thay x = 101 vào P ta được

P = (101 – 1)3 + 1 = 1003 + 1

Đáp án cần chọn là: A

Bài 29: Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

A. 8

B. 9

C. 10

D. Cả A, B, C đều sai

Lời giải

Gọi hai số lẻ liên tiếp là 2k – 1; 2k + 1 (k Є N*)

Theo bài ra ta có

(2k + 1)2 – (2k – 1)2 = 4k2 + 4k + 1 – 4k2 + 4k – 1 = 8k ⁝ 8

Đáp án cần chọn là: A

Bài 30: Có bao nhiêu cặp số nguyên (x; y) thỏa mãn x2 + 102 = y2

A. 0

B. 1

C. 2

D. 3

Lời giải

Ta có x2 + 102 = y2 ⇔ y2 – x2 = 102

Nhận thấy hiệu hai bình phương là một số chẵn nên x, y cùng là số chẵn hoặc cùng là số lẻ

Suuy ra y – x; y + x luôn là số chẵn

Lại có y2 – x2 = 102 ⇔ (y – x)(y + x) = 102

Mà (y – x) và (y + x) cùng là số chẵn.

Suy ra (y – x)(y + x) chia hết cho 4 mà 102 không chia hết cho 4 nên không tồn tại cặp số x; y thỏa mãn đề bài

Đáp án cần chọn là: A

Bài tập Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

Bài 31: Cho ax2 – 5×2 – ax + 5x + a – 5 = (a + m)(x2 – x + n) với với m, n Є R. Tìm m và n

A. m = 5; n = -1

B. m = -5; n = -1

C. m = 5; n = 1

D. m = -5; n = 1

Lời giải

Ta có

ax2 – 5×2 – ax + 5x + a – 5 = x2(a – 5) – x(a – 5) + a – 5

= (a – 5)(x2 – x + 1)

Suy ra m = -5; n = 1

Đáp án cần chọn là: D

Bài 32: Cho x2 – 4y2 – 2x – 4y = (x + 2y)(x – 2y + m) với m Є R. Chọn câu đúng

A. m < 0

B. 1 < m < 3

C. 2 < m < 4

D. m > 4

Lời giải

Ta có x2 – 4y2 – 2x – 4y

= (x2 – 4y2) – (2x + 4y)

= (x – 2y)(x + 2y) – 2(x + 2y)

= (x + 2y)(x – 2y – 2)

Suy ra m = -2

Đáp án cần chọn là: A

Bài 33: Cho x2 – 4xy + 4y2 – 4 = (x – my + 2)(x – 2y – 2) với m Є R. Chọn câu đúng

A. m < 0

B. 1 < m < 3

C. 2 < m < 4

D. m > 4

Lời giải

Ta có

x2 – 4xy + 4y2 – 4 = (x2 – 2.x.2y + (2y)2) – 4

= (x – 2y)2 – 22 = (x – 2y – 2)(x – 2y + 2)

Suy ra m = 2

Đáp án cần chọn là: B

Bài 34: Tìm x biết x4 + 4×3 + 4×2 = 0

A. x = 2; x = -2

B. x = 0; x = 2

C. x = 0; x = -2

D. x = -2

Lời giải

Vậy x = 0; x = -2

Đáp án cần chọn là: C

Bài 35: Tìm giá trị của x thỏa mãn x(2x – 7) – 4x + 14 = 0

Lời giải

Đáp án cần chọn là: C

Bài 36: Có bao nhiêu giá trị của x thỏa mãn x3 + 2×2 – 9x – 18 = 0

A. 1

B. 2

C. 0

D. 3

Lời giải

Vậy x = -2; x = 3; x =-3

Đáp án cần chọn là: D

Bài 37: Có bao nhiêu giá trị của x thỏa mãn x(x – 1)(x + 1) + x2 – 1 = 0

A. 1

B. 2

C. 0

D. 3

Lời giải

Ta có:

x(x – 1)(x + 1) + x2 – 1 = 0

⇔ x(x – 1)(x + 1) + (x2 – 1) = 0

⇔ x(x – 1)(x + 1) + (x – 1)(x + 1) = 0

⇔ (x + 1)(x – 1)(x + 1) = 0

⇔ (x + 1)2(x – 1) = 0

Vậy x = 1; x = -1

Đáp án cần chọn là: B

Bài 38: Cho |x| < 2. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức A = x4 + 2×3 – 8x – 16

A. A > 1

B. A > 0

C. A < 0

D. A ≥ 1

Lời giải

Ta có A = x4 + 2×3 – 8x – 16

= (x4 – 16) + (2×3 – 8x) = (x2 – 4)(x2 + 4) + 2x(x2 – 4)

= (x2 – 4)(x2 + 2x + 4)

Ta có x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3 ≥ 3 > 0, Ɐx

Mà |x| < 2 ⇔ x2 < 4 ⇔ x2 – 4 < 0

Suy ra A = (x2 – 4)(x2 + 2x + 4) < 0 khi |x| < 2

Đáp án cần chọn là: C

Bài 39: Cho x = 10 – y. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2

A. N > 1200

B. N < 1000

C. N < 0

D. N > 1000

Lời giải

Ta có

N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2

= (x3 + 3x2y + 3xy2 + y3) + (x2 + 2xy + y2)

= (x + y)3 + (x + y)2 = (x + y)2(x + y + 1)

Từ đề bài x = 10 – y ⇔ x + y = 10. Thay x + y = 10 vào N = (x + y)2(x + y + 1) ta được

N = 102(10 + 1) = 1100

Suy ra N > 1000 khi x = 10 – y

Đáp án cần chọn là: D

Bài 40: Cho ab3c2 – a2b2c3 – a2bc3 = abc2(b + c)(…) Biểu thức thích hợp điền vào dấu … là

A. b – a

B. a – b

C. a + b

D. -a – b

Lời giải

Ta có ab3c2 – a2b2c3 – a2bc3

= abc2(b2 – ab + bc – ac)

= abc2[(b2 – ab) + (bc – ac)]

= abc2[b(b – a) + c(b – a)]

= abc2(b + c)(b – a)

Vậy ta cần điền b – a

Đáp án cần chọn là: A

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

  • Lý thuyết Phân tích đa thức thành nhân tử đầy đủ
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
  • Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
  • Lý thuyết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

  • Giải bài tập Toán 8
  • Giải sách bài tập Toán 8
  • Top 75 Đề thi Toán 8 có đáp án
Previous Post

Nữ 2001 nên lấy chồng năm bao nhiêu tuổi? Kết hôn năm nào?

Next Post

Một số sự kiện trong ngày 4 tháng 5:

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Đề thi HSG Tiếng Anh 10 cấp tỉnh Hà Tĩnh năm học 2023-2024

by Tranducdoan
09/01/2026
0
0

SỞ GIÁO DỤC VÀ ĐÀO TẠOHÀ TĨNHĐÁP ÁN CHÍNH THỨC(Đáp án có 03 trang)KỲ THI CHỌN HỌC SINH GIỎI TỈNH...

Thể tích khối tròn xoay khi quay quanh Ox hình phẳng giới hạn bởi ít nhất hai đường cong

by Tranducdoan
09/01/2026
0
0

Bài viết hướng dẫn phương pháp ứng dụng tích phân để tính thể tích khối tròn xoay khi quay quanh...

Cách bấm máy tính lim, tích phân, đạo hàm, nguyên hàm thi trắc nghiệm

by Tranducdoan
09/01/2026
0
0

Giải toán bằng máy tính cầm tay là phương pháp được rất nhiều sĩ tử áp dụng trong bài thi...

200 Đề thi Toán 8 năm 2025 (cấu trúc mới, có đáp án)

by Tranducdoan
08/01/2026
0
0

Bộ 200 Đề thi Toán 8 năm 2025 theo cấu trúc mới nhất đầy đủ Học kì 1 và Học...

Load More
Next Post

Một số sự kiện trong ngày 4 tháng 5:

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Khẩu hiệu 5S là gì? Những khẩu hiệu 5S hay

09/01/2026

Pluronic® F-127, 10% in H2O

09/01/2026

6.27.30 NMAC

09/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.