Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Bài tập tổng hợp về hàm số (chọn lọc, có lời giải)

by Tranducdoan
07/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Bài viết Bài tập tổng hợp về hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập tổng hợp về hàm số.

Mục Lục Bài Viết

  1. Bài tập tổng hợp về hàm số (chọn lọc, có lời giải)
    1. Đáp án và hướng dẫn giải

Bài tập tổng hợp về hàm số (chọn lọc, có lời giải)

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Bài 1. Tìm tập xác định của các hàm số sau:

Bài 2: Tìm giá trị của tham số m để:

a) Hàm sốxác định trên (-1; 0)

b) Hàm sốcó tập xác định là [0; +∞)

Bài 3: Tìm giá trị của tham số m để:

a) Hàm sốxác định trên (-1; 3)

b) Hàm sốxác định trên (0;+∞)

Bài 4: Xét tính chẵn, lẻ của các hàm số sau:

Bài 5: Cho hàm số y = f(x), y = g(x) có cùng tập xác định D. Chứng minh rằng

a) Nếu hai hàm số trên lẻ thì hàm số y = f(x) + g(x) là hàm số lẻ

b) Nếu hai hàm số trên một chẵn một lẻ thì hàm số y = f(x).g(x) là hàm số lẻ

Bài 6:

a) Tìm m để đồ thị hàm số sau nhận gốc tọa độ O làm tâm đối xứng

y = x3 – (m2 – 9)x2 + (m + 3)x + m – 3.

b) Tìm m để đồ thị hàm số sau nhận trục tung làm trục đối xứng

y = x4 – (m2 – 3x + 2)x3 + m2 – 1

Bài 7: Xét sự biến thiên của các hàm số sau:

a) y = 4 – 3x

b) y = x2 + 4x – 5

c) y = 2/(x-2) trên (-∞; 2) và (2; +∞)

d) y = x/(x-1) trên (-∞; 1)

Bài 8: Chứng minh rằng hàm số y = x3 + x đồng biến trên R.

Áp dụng tìm số nghiệm của phương trình sau x3 – x =+ 1

Bài 9: Cho hàm số y = √(x-1) + x2 – 2x

a) Xét sự biến thiên của hàm số đã cho trên [1; +∞)

b) Tìm giá trị lớn nhất, nhỏ nhất của hàm số trên đoạn [2; 5]

Bài 10: Tìm các điểm cố định mà đồ thị hàm số sau luôn đi qua với mọi m.

a) y = x3 + 2(m-1)x2 + (m2 – 4m + 1)x – 2(m2 + 1)

b)

Bài 11: Cho hàm số f(x) = 2×4 + (m-1)x3 + (m2 – 1)x2 + 2(m2 – 3m + 2)x – 3.

Tìm m để điểm M(1;0) thuộc đồ thị hàm số đã cho.

Đáp án và hướng dẫn giải

Bài 1:

a) ĐKXĐ:

⇒ TXĐ: D = [1; +∞){2}.

b) ĐKXĐ:

⇒ TXĐ: D = (1; +∞).

c) ĐKXĐ: x2 + x + 1 ≠ 0 ⇔ (x + 1/2)2 + 3/4 ≠ 0 (đúng ∀ x)

⇒ TXĐ: D = R.

d) ĐKXĐ:

⇒ TXĐ: D = [-1;+∞){3}

⇒ TXĐ: D = R{2}

Bài 2:

a) ĐKXĐ: x ≠ m

Hàm số xác định trên (-1; 0) ⇔ m ∉ (-1; 0)

⇔

Vậy vớithì hàm số xác định trên (-1; 0)

b) ĐKXĐ:

Nếu m > 0 thì (*) ⇔ x ≥ m ⇒ D = [m; +∞) nên m > 0 không thỏa mãn

Nếu m ≤ 0 thì (*) ⇔ x ≥ 0 ⇒ D = [0; +∞)

Vậy m ≤ 0 là giá trị cần tìm.

Bài 3:

a) Hàm sốxác định trên (-1; 3)

ĐKXĐ:

Với m ≤ -1 thì (*) vô nghiệm.

Với m > -1 thì (*) ⇔ m – 1 ≤ x < 2m

Vậy không tồn tại m thỏa mãn yêu cầu đề bài.

b) Hàm sốxác định trên (0;+∞)

ĐKXĐ:

Ta có: (m – 1)/2 > -m ⇔ m > 1/3

Với m > 1/3 thì (2) ⇔ x ≥ (m – 1)/2

⇒ D = [(m – 1)/2; +∞)

Khi đó hàm số xác định trên (0; +∞) khi (m – 1)/2 ≤ 0 ⇔ m ≤ 1

⇒ 1/3 < m ≤ 1

Với m ≤ 1/3 thì (2) ⇔ x ≥ -m ⇒ D = [-m; +∞)

Khi đó hàm số xác định trên (0; +∞) khi -m ≤ 0 ⇔ m ≥ 0

⇒ 0 ≤ m ≤ 1/3

Vậy các giá trị m cần tìm là 0 ≤ m ≤ 1.

Bài 4

a)

TXĐ: D = R.

Với x ∈ D ⇒ -x ∈ D.Ta có:

Hàm số đã cho là hàm số lẻ.

b)

ĐKXĐ: x2 – 1 ≠ 0 ⇔ x ≠ ±1 ⇒ TXĐ: D = R{1; -1}

Với x ∈ D ⇒ -x ∈ D.Ta có:

Hàm số đã cho là hàm số chẵn

⇒ TXĐ: D = [-1;1]

Với x ∈ D ⇒ -x ∈ D.Ta có:

Hàm số đã cho là hàm số lẻ.

d)

ĐKXĐ: x – 1 ≠ 0 ⇔ x ≠ 1 ⇒ TXĐ: D = R{1}

Với x0 = -1 ∈ D ⇒ -x0 = 1 ∉ D

Vậy hàm số không chẵn cũng không lẻ.

e)

TXĐ: R

Với x ∈ D ⇒ -x ∈ D.Ta có:

ĐKXĐ: |x – 1| – |x + 1| ≠ 0 ⇔ |x – 1| ≠ |x + 1|

TXĐ: D = R {0}

Với x ∈ D ⇒ -x ∈ D.Ta có:

Vậy hàm số đã cho là hàm số lẻ.

Bài 5:

a) Ta có hàm số y = f(x) + g(x) có tập xác định D. Do hàm số y = f(x); y = g(x) lẻ nên ∀ x ∈ D ⇒ -x ∈ D và f(-x) = -f(x); g(-x) = -g(x) suy ra

y(-x) = f(-x)+ g(-x) = -[f(x) + g(x)] = -y(x)

Suy ra hàm số y = f(x) + g(x) là hàm số lẻ.

b) Giả sử hàm số y = f(x) chẵn, y = g(x) lẻ.

Khi đó hàm số y = f(x)g(x) có tập xác định là D nên ∀ x ∈ D ⇒ -x ∈ D

Ta có y(-x)= f(-x)g(-x) = f(x)[-g(x)] = -[f(x)g(x)] = -y(x)

Do đó hàm số y = f(x)g(x) lẻ.

Bài 6

a) Ta có TXĐ: D = R nên ∀ x ∈ D ⇒ -x ∈ D

Đồ thị hàm số đã cho nhận gốc tọa độ O làm tâm đối xứng khi và chỉ khi nó là hàm số lẻ

⇔ f(-x) = -f(x), ∀ x ∈ R.

⇔ (-x)3 – (m2 – 9)(-x)2 + (m + 3)(-x) + m – 3 = x3 – (m2 – 9)x2 + (m + 3)x + m – 3, ∀ x ∈ R.

⇔ 2(m2 – 9)x2 – 2(m – 3) = 0, ∀ x ∈ R.

b) Ta có TXĐ: D = R nên ∀ x ∈ D ⇒ -x ∈ D

Đồ thị hàm số đã cho nhận trục tung làm trục đối xứng khi và chỉ khi nó là hàm số chẵn

⇔ f(-x) = f(x), ∀ x ∈ R.

⇔ (-x)4 – (m2 – 3x + 2)(-x)3 + m2 – 1 = x4 – (m2 – 3x + 2)x3 + m2 – 1, ∀ x ∈ R.

⇔ 2(m2 – 3x + 2)x3 = 0, ∀ x ∈ R.

⇔ m2 – 3x + 2 = 0

Bài 7:

a) Hàm số đồng biến trên (-∞; 4/3) và nghịch biến trên khoảng (4/3; +∞)

b) Với mọi x1; x2 ∈ R; x1 ≠ x2 ta có:

x1; x2 ∈ (-∞; -2) ⇒ K < 0 suy ra hàm số nghịch biến trên (-∞; -2).

x1; x2 ∈ (-2; +∞) ⇒ K > 0 suy ra hàm số đồng biến trên (-2; +∞).

c) Với mọi x1; x2 ∈ R; x1 ≠ x2 ta có:

x1; x2 ∈ (-∞; 2) ⇒ K < 0 suy ra hàm số nghịch biến trên (-∞; 2).

x1; x2 ∈ (2; +∞) ⇒ K > 0 suy ra hàm số đồng biến trên (2; +∞)

d) Với mọi x1; x2 ∈ (-∞; 1); x1 ≠ x2 ta có:

Vậy hàm số nghịch biến trên(-∞; 1).

Bài 8:

Với mọi x1; x2 ∈ R; x1 ≠ x2 ta có:

= x12 + x22 + x1x2 + 1 > 0

Suy ra hàm số đã cho đồng biến trên R.

Ta có x3 – x =+ 1 ⇔ x3 + x = 2x + 1 +

Đặt= y, phương trình trở thành x3 + x = y3 + y

Do hàm số f(x) = x3 + x đồng biến trên R nên

x = y ⇒= x ⇔ x3 – 2x – 1 = 0

⇔

Vậy phương trình có nghiệm

Bài 9: Cho hàm số y = √(x-1) + x2 – 2x

a) Với mọi x1; x2 ∈ [1; +∞); x1 ≠ x2 ta có:

Do đó hàm số đã cho đồng biến trên [1; +∞)

b) Do hàm số đồng biến trên [1; +∞) nên f(2) < f(x) < f(5) ⇔ 1 < f(x) < 17

Vậy giá trị nhỏ nhất của hàm số trên [2; 5] là 1, đạt được khi x = 2.

Vậy giá trị lớn nhất của hàm số trên [2; 5] là 17, đạt được khi x = 5.

Bài 10:

a) Ta có: y = x3 + 2(m-1)x2 + (m2 – 4m + 1)x – 2(m2 + 1)

⇔ m2(x – 2) + m(2×2 – 4x) + x3 – 2×2 + x – 2 – y = 0

Tọa độ điểm cố định mà họ đồ thị đồ thị luôn đi qua là nghiệm của hệ:

Vậy điểm cần tìm là A (2; 0)

b)

ĐKXĐ: x + m + 2 ≠ 0 ⇔ x ≠ -m – 2

Hàm số tương đương với:

(m – 1)x + m + 2 = y(x + m + 2)

⇔ m(x + 1 – y) – (x – 2 + xy + 2y) = 0

Tọa độ điểm cố định mà họ đồ thị đồ thị luôn đi qua là nghiệm của hệ:

Điểm cố định là (0; 1) và (-4; -3)

Bài 11: Điểm M(1; 0) thuộc đồ thị hàm số đã cho khi và chỉ khi:

f(1) = 0

⇔ 0 = 2 + (m – 1) + (m2 – 1) + 2(m2 – 3m + 2) – 3

⇔ 3m2 – 5m + 1 = 0

⇔

Vậylà giá trị cần tìm.

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
Previous Post

Đường trung tuyến là gì? Tính chất, công thức, các dạng bài tập

Next Post

Lý thuyết và bài tập về tụ điện – Vật lý 11

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

100 bài tập số phức mới nhất

by Tranducdoan
08/01/2026
0
0

Số phức là một trong những phần kiến thức trọng tâm trong chương trình Đại số 12. Vì vậy việc...

Huy Cao's Blog

by Tranducdoan
08/01/2026
0
0

CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH. 1. Phương pháp giải phương trình bậc ba. Xét phương trình bậc ba dạng...

Lý thuyết hàm số mũ, hàm số logarit, hàm số lũy thừa chi tiết

by Tranducdoan
08/01/2026
0
0

Bài viết Lý thuyết hàm số mũ, hàm số logarit, hàm số lũy thừa lớp 12 hay, chi tiết giúp...

10 Đề thi Cuối kì 2 Toán 7 Cánh diều năm 2025 (có đáp án)

by Tranducdoan
08/01/2026
0
0

Với bộ 10 Đề thi Cuối Học kì 2 Toán 7 Cánh diều năm 2025 có đáp án theo cấu...

Load More
Next Post

Lý thuyết và bài tập về tụ điện - Vật lý 11

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Các ngày lễ trọng Công giáo năm 2026 theo lịch Phụng vụ

08/01/2026

Ngành Công An Tuyển Nữ & Tiêu Chuẩn Thi Công An Nữ Năm 2026

08/01/2026

20+ Mẫu lời cam đoan trong tiểu luận hay nhất

08/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.