Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

100 bài tập số phức mới nhất

by Tranducdoan
08/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Số phức là một trong những phần kiến thức trọng tâm trong chương trình Đại số 12. Vì vậy việc luyện giải bài tập liên quan đến số phức, hàm biến phức là vô cùng quan trọng. Trong bài viết dưới đây chúng mình đã tổng hợp lại các dạng toán liên quan đến số phức và 100 bài tập số phức từ mức độ cơ bản đến vận dụng cao.

Mục Lục Bài Viết

  1. Các dạng bài tập số phức
    1. Dạng 1. Các phép tính về số phức
    2. Dạng 2. Biểu diễn hình học của số phức và ứng dụng
    3. Dạng 3. Căn bậc hai của số phức và phương trình bậc hai
    4. Dạng 4. Phương trình quy về bậc hai
    5. Dạng 5. Dạng lượng giác của số phức
    6. Dạng 6. Cực trị của số phức
  2. Ví dụ bài tập số phức

Các dạng bài tập số phức

Dạng 1. Các phép tính về số phức

Dạng bài này cần áp dụng những công thức về phép cộng, trừ và phép nhân chia số phức:

  • Phép cộng số phức:

(a + bi) + (c + di) = (a + c) + (b + d)i

  • Phép trừ số phức:

(a + bi) – (c + di) = (a – c) + (b – d)i

  • Phép nhân số phức:

(a + bi)(c + di) = (ac – bd) + (bc + ad)i

  • Phép chia số phức:
  • Mô đun của số phức là căn bậc 2 số học (căn bậc 2 không âm) của a2+b2. Modun của số phức z = a+bi là z hoặc a+bi.
  • Tập hợp điểm biểu diễn của số phức
  • Số phức z = a + bi, (a,b ∈ R) biểu diễn điểm M(a, b).
  • Ngược lại điểm M(a, b) biểu diễn số phức z = a + bi.

👉 Xem thêm: Đề thi THPT Quốc Gia 2024 Môn Toán mới nhất 👉 Xem thêm: Bộ 20 đề thi thử THPT quốc gia 2024 môn toán (Có Lời Giải) 👉 Xem thêm: Tài liệu ôn thi THPT quốc gia 2024 môn toán 👉 Xem thêm: Bộ đề thi tham khảo THPT quốc gia 2024 môn toán 👉 Xem thêm: Cấu trúc đề thi thpt quốc gia môn toán 2024 👉 Xem thêm: Tổng hợp công thức toán thi thpt quốc gia mới nhất

Dạng 2. Biểu diễn hình học của số phức và ứng dụng

Mỗi số phức z = a + bi (a, b ∈ R) được biểu diễn bởi một điểm M(z) = (a, b) trên mặt phẳng tọa độ Ox Oy.

Trong đó:

  • Hoành độ của điểm M(z) là phần thực của số phức z.
  • Tung độ của điểm M(z) là phần ảo của số phức z.

Vậy, trục Ox được gọi là trục thực, Oy được gọi là trục ảo.

Biểu diễn hình học của số phức có nhiều ứng dụng trong giải tích số phức, chẳng hạn như:

  • Tính mô đun và argument của số phức:
  • Mô đun của số phức z = a + bi là độ dài của đoạn thẳng OM(z).
  • Argument của số phức z = a + bi là góc giữa đường thẳng OM(z) và trục Ox.
  • Thực hiện các phép toán số phức:
  • Các phép toán cộng, trừ, nhân, chia, tìm số phức liên hợp, tìm số phức nghịch đảo của số phức z = a + bi có thể được thực hiện bằng cách thực hiện các phép toán tương ứng trên các điểm M(z) và M(-z) trên mặt phẳng tọa độ.
  • Xác định tập hợp điểm biểu diễn của số phức: Tập hợp điểm biểu diễn của số phức z = a + bi là một đường tròn có tâm tại điểm (a, 0) và bán kính bằng |z|.
  • Nhiều phương trình số phức có thể được giải bằng cách sử dụng biểu diễn hình học của số phức.

Dạng 3. Căn bậc hai của số phức và phương trình bậc hai

  • Căn bậc hai của số phức z = a + bi là một số phức u = x + yi thỏa mãn u^2 = z.
  • Một phương trình bậc hai của số phức có dạng: az^2 + bz + c = 0.
  • Có nhiều cách giải phương trình bậc hai, trong đó có hai cách phổ biến sau:
  • Cách dùng phương pháp hoành độ
  • Cách dùng phương pháp lượng giác

Dạng 4. Phương trình quy về bậc hai

Một phương trình quy về bậc hai là một phương trình có dạng tổng quát như sau: f(z) = az^2 + bz + c = 0, trong đó, a, b, c là các số phức với a ≠ 0.

Có nhiều cách giải phương trình quy về bậc hai:

  • Phương pháp hoành độ
  • Phương pháp lượng giác
  • Phương pháp đặt ẩn phụ
  • Lưu ý: Cách giải phương trình quy về bậc hai bằng cách đặt ẩn phụ là một cách giải khá đơn giản và dễ nhớ. Tuy nhiên, cách giải này chỉ áp dụng được cho các phương trình quy về bậc hai có dạng tổng quát như sau: f(z) = az^2 + bz + c = 0, trong đó, b ≠ 0.

Dạng 5. Dạng lượng giác của số phức

Mỗi số phức z = a + bi (a, b ∈ R) có thể được biểu diễn dưới dạng lượng giác như sau: z = r(cos φ + i sin φ)

Trong đó:

r là mô đun của số phức z.

φ là argument của số phức z.

Dạng 6. Cực trị của số phức

Cực trị của số phức là các điểm biểu diễn của số phức có mô đun lớn nhất hoặc nhỏ nhất.

Để tìm cực trị của số phức, ta có thể sử dụng các cách sau:

  • Tìm bằng phương pháp đại số.
  • Theo định nghĩa, cực trị của số phức là các điểm biểu diễn của số phức có mô đun lớn nhất hoặc nhỏ nhất.
  • Tìm bằng phương pháp lượng giác.

Theo dạng lượng giác của số phức, mô đun của số phức z = r(cos φ + i sin φ) là: |z| = r

Để tìm cực trị của số phức z, ta có thể tìm các điểm biểu diễn của số phức z thỏa mãn: r = r max hoặc: r = r min

Trong đó, r max là mô đun lớn nhất của số phức z và r min là môđun nhỏ nhất của số phức z.

👉 Xem thêm: 100 bài tập đạo hàm 👉 Xem thêm: 100 bài tập lũy thừa lớp 12 👉 Xem thêm: 100 bài tập hàm số mũ và logarit 👉 Xem thêm: 100 bài tập nguyên hàm 👉 Xem thêm: 100 bài tập tích phân 👉 Xem thêm: 100 bài tập khối đa diện 👉 Xem thêm: 100 bài tập hình học không gian 11 👉 Xem thêm: 100 bài tập xác suất lớp 11 👉 Xem thêm: 100 bài tập cấp số nhân 👉 Xem thêm: 100 bài tập cấp số cộng

Ví dụ bài tập số phức

Ví dụ 1: Cho số phức z thỏa mãn z+3 = 5 và z-2i = z-2-2i. Tính z.

  1. z = 17
  2. z = 17
  3. z = 10
  4. z = 10

Đáp án: C

Hướng dẫn giải:

Gọi số phức cần tìm là z = a+bi (a,b R), thay vào các hệ thức trong bài tìm A và B => z =z

Công thức tính mô đun số phức z = a2+b2

Ví dụ 2:

Có bao nhiêu số phức Z thỏa mãn đồng thời các điều kiện:

z-1 = 5 và z2 là số thuần ảo.

  1. 1
  2. 0
  3. 4
  4. 2

Đáp án: C

Hướng dẫn giải:

Gọi số phức cần tìm là z = a+bi (a,b R), thay vào các hệ thức trong bài tìm a và b => z

Số phức: z = a+bi là thuần aoe nếu a = 0

Công thức tính mô đun số phức z = a2+b2

Banner TNNN2 1

Ví dụ 3:

Trong hệ tọa độ Oxy cho điểm M biểu diễn số phức z = -2+3i.

Gọi N là điểm thuộc đường thẳng y = 3 sao cho tam giác OMN cân tại O. Điểm N là điểm biểu diễn của số phức nào dưới đây?

  1. z = 3 – 2i
  2. z = -2 – 2i
  3. 2 + 3i
  4. -2 + i

Đáp án: C

Hướng dẫn giải:

  • Số phức z = a + bi (a,b R) được biểu diễn bởi điểm M (a,b) trên mặt phẳng tọa độ.
  • Tam giác OMN cân tại O OM = ON

Tham khảo 100 bài tập chuyên đề số phức tại:

  • bai-tap-so-phuc-de-2_2432022172638.pdf
  • chuyen-de-so-phuc.pdf
  • CHUYÊN ĐỀ SỐ PHỨC.pdf
  • thuvienhoclieu.com-Cac-dang-trac-nghiem-So-phuc-on-thi-tot-nghiep-THPT.docx

Trên đây là danh sách 100 bài tập số phức do chúng mình tổng hợp được. Hy vọng đây sẽ là tài liệu hữu ích cho các bạn trong quá trình học tập. BTEC FPT chúc bạn đạt điểm số cao trong kỳ thi sắp tới.

Previous Post

Công Thức Nguyên Hàm Từng Phần Và Cách Giải Bài Tập Chi Tiết

Next Post

Từ đồng âm và từ đa nghĩa – Trần Thị Lam Thủy – Tiếng Việt Phổ thông – Nghiên cứu – Viện Nghiên Cứu Việt Mỹ

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Toán học phổ thông – SGK Trần Thanh Phong : "Học Cái mới – sửa cái sai – Phát huy cái biết"

by Tranducdoan
09/01/2026
0
0

ÔN TẬP HÌNH HỌC KHÔNG GIAN LỚP 11 HỌC KỲ II. -o0o- BÀI 1 : Cho tứ giác S.ABCD có...

Toán 7 Cánh diều Bài 12: Tính chất ba đường trung trực của tam giác

by Tranducdoan
09/01/2026
0
0

Với giải bài tập Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác sách Cánh diều...

Tổng hợp lý thuyết tọa độ không gian Oxyz – Lê Minh Tâm

by Tranducdoan
09/01/2026
0
0

Tài liệu gồm 226 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và...

Giới hạn của hàm số

by Tranducdoan
09/01/2026
0
0

Giới hạn của hàm số f(x) khi x tiến tới a Một phần của loạt bài vềVi tích phân Định...

Load More
Next Post

Từ đồng âm và từ đa nghĩa - Trần Thị Lam Thủy - Tiếng Việt Phổ thông - Nghiên cứu - Viện Nghiên Cứu Việt Mỹ

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Toán học phổ thông – SGK Trần Thanh Phong : "Học Cái mới – sửa cái sai – Phát huy cái biết"

09/01/2026

Toán 7 Cánh diều Bài 12: Tính chất ba đường trung trực của tam giác

09/01/2026

Tổng hợp lý thuyết tọa độ không gian Oxyz – Lê Minh Tâm

09/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.