Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Tóm tắt Lý thuyết Toán 10 (hay, chi tiết) | Kiến thức trọng tâm Toán 10 Tập 1, Tập 2

by Tranducdoan
07/02/2026
in Toán tổng hợp
0
Đánh giá bài viết

Tài liệu tổng hợp lý thuyết Toán 10 sách mới Kết nối tri thức, Cánh diều, Chân trời sáng tạo đầy đủ Tập 1, Tập 2 giúp học sinh lớp 10 dễ dàng ôn luyện và nắm vững kiến thức trọng tâm môn Toán lớp 10 Học kì 1, Học kì 2, từ đó đạt điểm cao trong các bài thi môn Toán lớp 10.

Mục Lục Bài Viết

  1. Tóm tắt lý thuyết Toán 10 (cả ba sách)
    1. Mục lục Lý thuyết Toán lớp 10 Kết nối tri thức
    2. Tổng hợp Lý thuyết Toán 10 Tập 1 Kết nối tri thức
    3. Tổng hợp Lý thuyết Toán lớp 10 Tập 2
    4. Mục lục Lý thuyết Toán lớp 10 Cánh diều
    5. Tổng hợp Lý thuyết Toán 10 Tập 1 Cánh diều
    6. Tổng hợp Lý thuyết Toán 10 Tập 2 Cánh diều
    7. Mục lục Lý thuyết Toán lớp 10 Chân trời sáng tạo
    8. Tổng hợp Lý thuyết Toán 10 Tập 1 Chân trời sáng tạo
    9. Tổng hợp Lý thuyết Toán 10 Tập 2 Chân trời sáng tạo
    10. Chương 1: Mệnh đề – Tập hợp
    11. Lý thuyết Mệnh đề
    12. Lý thuyết Tập hợp
    13. I. KHÁI NIỆM TẬP HỢP
    14. II. TẬP HỢP CON
    15. III. TẬP HỢP BẰNG NHAU
    16. Lý thuyết Các phép toán tập hợp
    17. II. HỢP CỦA HAI TẬP HỢP
    18. III. HIỆU VÀ PHẦN BÙ CỦA HAI TẬP HỢP

Tóm tắt lý thuyết Toán 10 (cả ba sách)

(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST

Mục lục Lý thuyết Toán lớp 10 Kết nối tri thức

Tổng hợp Lý thuyết Toán 10 Tập 1 Kết nối tri thức

Tổng hợp Lý thuyết Toán lớp 10 Tập 2

Mục lục Lý thuyết Toán lớp 10 Cánh diều

Tổng hợp Lý thuyết Toán 10 Tập 1 Cánh diều

Tổng hợp Lý thuyết Toán 10 Tập 2 Cánh diều

Mục lục Lý thuyết Toán lớp 10 Chân trời sáng tạo

Tổng hợp Lý thuyết Toán 10 Tập 1 Chân trời sáng tạo

Tổng hợp Lý thuyết Toán 10 Tập 2 Chân trời sáng tạo

Cách xem online sách lớp 10 mới:

  • Xem online Bộ sách lớp 10 Kết nối tri thức
  • Xem online Bộ sách lớp 10 Cánh diều
  • Xem online Bộ sách lớp 10 Chân trời sáng tạo

Lưu trữ: Lý thuyết Toán 10 (sách cũ)

  • Tổng hợp lý thuyết chương Mệnh đề – Tập hợp
  • Tổng hợp lý thuyết chương Hàm số bậc nhất và bậc hai
  • Tổng hợp lý thuyết chương Phương trình, Hệ phương trình
  • Tổng hợp lý thuyết chương Bất đẳng thức. Bất phương trình
  • Tổng hợp lý thuyết chương Thống kê
  • Tổng hợp lý thuyết chương Cung và góc lượng giác. Công thức lượng giác
  • Tổng hợp lý thuyết chương Vectơ
  • Tổng hợp lý thuyết chương Tích vô hướng của hai vectơ và ứng dụng
  • Tổng hợp lý thuyết chương Phương pháp tọa độ trong mặt phẳng

Chương 1: Mệnh đề – Tập hợp

Lý thuyết Mệnh đề

I. MỆNH ĐỀ

Mỗi mệnh đề phải đúng hoặc sai.

Mỗi mệnh đề không thể vừa đúng, vừa sai.

II. PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ

Kí hiệu mệnh phủ định của mệnh đề P là ta có

– đúng khi P sai.

– sai khi P đúng.

III. MỆNH ĐỀ KÉO THEO

Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, và kí hiệu là P => Q.

Mệnh đề P => Q còn được phát biểu là “P kéo theo Q” hoặc “Từ P suy ra Q”.

Mệnh đề P => Q chỉ sai khi P đúng và Q sai.

Như vậy, ta chỉ xét tính đúng sai của mệnh đề P => Q khi P đúng. Khi đó, nếu Q đúng thì P => Q đúng, nếu Q sai thì P => Q sai.

Các định lí, toán học là những mệnh đề đúng và thường có dạng P => Q.

Khi đó ta nói P là giả thiết, Q là kết luận của định lí, hoặc P là điều kiện đủ để có Q hoặc Q là điều kiện cần để có P.

IV. MỆNH ĐỀ ĐẢO – HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG

Mệnh đề Q => P được gọi là mệnh đề đảo của mệnh đề P => Q

Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Nếu cả hai mệnh đề P => Q và Q => P đều đúng ta nói P và Q là hai mệnh đề tương đương. Khi đó ta có kí hiệu P  Q và đọc là P tương đương Q, hoặc P là điều kiện cần và đủ để có Q, hoặc P khi và chỉ khi Q.

V. KÍ HIỆU ∀ VÀ ∃

Ví dụ: Câu “Bình phương của mọi số thực đều lớn hơn hoặc bằng 0” là một mệnh đề. Có thể viết mệnh đề này như sau

∀x ∈ R : x2 ≥ 0 hay x2 ≥ 0, ∀x ∈ R.

Kí hiệu ∀ đọc là “với mọi”.

Ví dụ: Câu “Có một số nguyên nhỏ hơn 0” là một mệnh đề

Có thể viết mệnh đề này như sau

∃n ∈ Z : n < 0.

Kí hiệu ∃ đọc là “có một” (tồn tại một) hay “có ít nhất một” (tồn tại ít nhất một).

Phủ định của mệnh đề “∀x ∈ X, P(x) ” là mệnh đề “ ∃x ∈ X, “

Phủ định của mệnh đề “∃x ∈ X, P(x)” là mệnh đề “ ∀ x ∈ X, “

Lý thuyết Tập hợp

I. KHÁI NIỆM TẬP HỢP

1. Tập hợp và phần tử

Tập hợp (còn gọi là tập) là một khái niệm cơ bản của toán học, không định nghĩa.

Giả sử đã cho tập hợp A.

Để chỉ a là một phần tử của tập hợp A, ta viết a ∈ A (đọc là a thuộc A).

Để chỉ a không phải là một phần tử của tập hợp A, ta viết a ∈ A (đọc là P không thuộc A).

2. Cách xác định tập hợp

Một tập hợp có thể được xác định bằng cách chỉ ra tính chất đặc trưng cho các phần tử của nó.

Vậy ta có thể xác định một tập hợp bằng một trong hai cách sau

Liệt kê các phần tử của nó.

Chỉ ra tính chất đặc trưng cho các phần tử của nó.

Người ta thường minh họa tập hợp bằng một hình phẳng được bao quanh bởi một đường kín, gọi là biểu đồ Ven.

3. Tập hợp rỗng

Tập hợp rỗng, kí hiệu là ø, là tập hợp không chứa phần tử nào.

Nếu A không phải là tập hợp rỗng thì A chứa ít nhất một phần tử.

A ≠ ø <=> ∃x : x ∈ A.

II. TẬP HỢP CON

Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì ta nói A là một tập hợp con của B và viết A B (đọc là A chứa trong B).

Thay cho A B ta cũng viết B ⊃ A (đọc là B chứa A hoặc B bao hàm A)

Như vậy A ⊂ B <=> (∀x : x ∈ A => x ∈ B).

Nếu A không phải là một tập con của B ta viết A ⊄ B.

Ta có các tính chất sau :

A Avới mọi tập hợp A

Nếu A ⊂ B và B ⊂ C thì A ⊂ C (h.4)

ø A với mọi tập hợp A.

III. TẬP HỢP BẰNG NHAU

Khi A ⊂ B và B ⊂ A ta nói tập hợp A bằng tập hợp B và viết là A = B. Như vậy

A = B <=> (∀x : x ∈ A <=> x ∈ B).

Lý thuyết Các phép toán tập hợp

I. GIAO CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử vừa thuộc A, vừa thuộc B được gọi là giao của A và B.

Kí hiệu C = A ∩ B (phần gạch chéo trong hình).

Vậy A ∩ B = {x| x ∈ A; x ∈ B}

II. HỢP CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử thuộc A hoặc thuộc B được gọi là hợp của A và B

Kí hiệu C = A ∪ B (phần gạch chéo trong hình).

Vậy A ∪ B = {x| x ∈ A hoặc x ∈ B}

III. HIỆU VÀ PHẦN BÙ CỦA HAI TẬP HỢP

Tập hợp C gồm các phần tử thuộc A nhưng không thuộc B gọi là hiệu của A và B

Kí hiệu C = A B (phần gạch chéo trong hình 7).

Vậy A B = A ∪ B = {x| x ∈ A và x ∈ B}

Khi B ⊂ A thì A B gọi là phần bù của B trong A, kí hiệu CAB.

………………………………

………………………………

………………………………

Để học tốt lớp 10 các môn học sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
Previous Post

HDMI 2.1 seems entirely unnecessary to me since it appears XSX will mostly be getting 4K/60FPS games (for the most part).

Next Post

Một số sự kiện trong ngày 10 tháng 6:

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Các phương pháp phân tích đa thức thành nhân tử học sinh cần nhớ

by Tranducdoan
08/02/2026
0
0

Phân tích đa thức thành nhân tử là dạng bài thường gặp trong chương trình Toán lớp 8 phần Đại...

Các dạng toán về hình vuông và cách giải

by Tranducdoan
08/02/2026
0
0

Với Các dạng toán về hình vuông và cách giải môn Toán lớp 8 phần Hình học sẽ giúp học...

Xác định góc giữa hai đường thẳng chéo nhau

by Tranducdoan
07/02/2026
0
0

Bài viết trình bày phương pháp xác định và tính góc giữa hai đường thẳng chéo nhau trong không gian...

Sự tương giao của đồ thị hàm số đầy đủ, chi tiết

by Tranducdoan
07/02/2026
0
0

Sự tương giao của đồ thị hàm số lớp 12 là một dạng toán thường xuyên xuất hiện ở các...

Load More
Next Post

Một số sự kiện trong ngày 10 tháng 6:

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Thành phần phụ chú là gì? Lấy ví dụ đặt câu có thành phần phụ chú

08/02/2026

Exon

08/02/2026

Các phương pháp phân tích đa thức thành nhân tử học sinh cần nhớ

08/02/2026
Xoilac TV trực tiếp bóng đá đọc sách online Socolive trực tiếp Ca Khia TV trực tiếp XoilacTV go 88
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.