Tài Liệu Học Tập
No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ
Tài Liệu Học Tập
No Result
View All Result
Home Toán tổng hợp

Đề Thi Giữa HK2 Toán 10 Kết Nối Tri Thức Cấu Trúc Mới 2024 Giải Chi Tiết-Đề 5

by Tranducdoan
08/01/2026
in Toán tổng hợp
0
Đánh giá bài viết

Đề thi giữa HK2 Toán 10 Kết nối tri thức cấu trúc mới 2024 giải chi tiết-Đề 5 được soạn dưới dạng file word và PDF gồm 3 trang. Các bạn xem và tải về ở dưới.

Phần 1. Câu trắc nghiệm nhiều phương án chọn.

Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án đúng nhất.

Câu 1. Chọn từ thích hợp để điền vào chỗ (……).

Nếu mỗi giá trị của $x$ thuộc tập hợp số $D$……. giá trị tương ứng của $y$ thuộc tập hợp số $mathbb{R}$ thì ta có một hàm số.

A. có. B. có một. C. có một và chỉ một. D. có nhiều.

Câu 2. Hàm số nào sau đây là hàm số bậc hai?

A. $y = 2{x^3} + 2{x^2} – 3x$. B. $y = frac{{2024}}{{{x^2} + x + 1}}$. C. $y = 3{x^2} – x + 4$. D. $y = frac{2}{{{x^2}}} – frac{5}{x} + 1$.

Câu 3. Đồ thị hàm số $y = a{x^2} + bx + cleft( {a ne 0} right)$ có trục đối xứng là:

A. $x = frac{b}{a}$. B. $x = – frac{b}{a}$. C. $x = frac{b}{{2a}}$. D. $x = – frac{b}{{2a}}$.

Câu 4. Tập nghiệm của bất phương trình ${x^2} – 2x + 3 > 0$ là:

A. $emptyset $. B. $mathbb{R}$. C. $left( { – infty ; – 1} right) cup left( {3; + infty } right)$. D. $left( { – 1;3} right)$.

Câu 5. Giá trị $x = 2$ là nghiệm của phương trình nào sau đây?

A. $sqrt {{x^2} – x – 4} = sqrt {x – 4} $. B. $x – 1 = sqrt {x – 3} $. C. $x + 2 = 2sqrt {3x – 2} $. D. $x + 2 = sqrt {x – 1} $.

Câu 6. Số nghiệm của phương trình $sqrt {{x^2} – 2x – 3} = sqrt {2{x^2} + x – 3} $ là:

A. 1 . B. 2 . C. 0 . D. 3.

Câu 7. Đường thẳng $Delta $ có vectơ chỉ phương là $overrightarrow {{u_Delta }} left( {12; – 13} right)$. Vectơ nào sau đây là vectơ pháp tuyến của $Delta $ ?

A. $overrightarrow {{n_Delta }} left( { – 13;12} right)$. B. $overrightarrow {{n_Delta }} left( {12;13} right)$. C. $overrightarrow {{n_Delta }} left( {13;12} right)$. D. $overrightarrow {{n_Delta }} left( { – 12; – 13} right)$.

Câu 8. Phương trình của đường thẳng $Delta $ đi qua điểm $Mleft( {5;4} right)$ và có vectơ pháp tuyến $vec nleft( {11; – 12} right)$ là:

A. $5x + 4y + 7 = 0$. B. $5x + 4y – 7 = 0$. C. $11x – 12y – 7 = 0$. D. $11x – 12y + 7 = 0$.

Câu 9. Trong mặt phẳng tọa độ $Oxy$, cho hai đường thẳng ${Delta _1}:x – 2y + 1 = 0,{Delta _2}:3x – y + 7 = 0$. Nhận định nào sau đây là đúng?

A. Hai đường thẳng ${Delta _1}$ và ${Delta _2}$ vuông góc với nhau.

B. Hai đường thẳng ${Delta _1}$ và ${Delta _2}$ song song với nhau.

C. Hai đường thẳng ${Delta _1}$ và ${Delta _2}$ trùng nhau.

D. Hai đường thẳng ${Delta _1}$ và ${Delta _2}$ cắt nhau.

Câu 10. Người ta quy ước góc giữa hai đường thẳng song song hoặc trùng nhau là:

A. ${180^ circ }$. B. ${120^ circ }$. C. ${90^ circ }$. D. ${0^ circ }$.

Câu 11. Cho đường tròn $left( C right):{(x – 1)^2} + {(y – 2)^2} = 25$. Đường tròn $left( C right)$ có:

A. Tâm $Ileft( {1;2} right)$ và bán kính $R = 25$. B. Tâm $Ileft( { – 1; – 2} right)$ và bán kính $R = 25$.

C. Tâm $Ileft( {1;2} right)$ và bán kính $R = 5$. D. Tâm $Ileft( { – 1; – 2} right)$ và bán kính $R = 5$.

Câu 12. Cho đường tròn $left( C right):{x^2} + {y^2} + 6x – 4y + 2 = 0$. Đường tròn $left( C right)$ có:

A. Tâm $Ileft( { – 3;2} right)$ và bán kính $R = 11$. B. Tâm $Ileft( { – 3;2} right)$ và bán kính $R = sqrt {11} $.

C. Tâm $Ileft( {3; – 2} right)$ và bán kính $R = 11$. D. Tâm $Ileft( {3; – 2} right)$ và bán kính $R = sqrt {11} $.

Phần 2. Câu trắc nghiệm đúng sai.

Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 1. Cho các hàm số sau. Khi đó:

a) Hàm số $y = – 2{x^2} + 3x – frac{1}{2}$ là hàm số bậc hai

b) Hàm số $y = 8{x^4} – 5{x^2} + 0,5$ là hàm số bậc hai

c) Hàm số $y = 9{x^3} + 3{x^2} – x – frac{1}{2}$ là hàm số bậc hai

d) Hàm số $y = left( {{m^2} + 6m + 10} right){x^2} + left( {m + 1} right)x – 3{m^2} + 1$ ( $m$ là tham số $)$ là hàm số bậc hai

Câu 2. Cho phương trình $sqrt {2{x^2} + x + 3} = – x – 5left( * right)$. Khi đó

a) Bình phương 2 vế của phương trình ta được ${x^2} – 9x – 22 = 0$

b) Phương trình $sqrt {2{x^2} + x + 3} = – x – 5$ và phương trình ${x^2} – 9x – 22 = 0$ có chung tập nghiệm

c) $x = 11;x = – 2$ là nghiệm của phương trình $left( * right)$

d) Tập nghiệm của phương trình (*) là $S = emptyset $

Câu 3. Trong mặt phẳng toạ độ $Oxy$, cho $Mleft( {1;2} right),Nleft( {3; – 1} right),vec nleft( {2; – 1} right),vec uleft( {1;1} right)$. Vậy:

a) Phương trình tổng quát của đường thẳng ${d_1}$ đi qua $M$ và có vectơ pháp tuyến $vec n$ là $2x – y = 0$

b) Phương trình tham số của đường thẳng ${d_2}$ đi qua $N$ và có vectơ chỉ phương $vec u$ là $left{ {begin{array}{llllllllllllllllllll} {x = 3 + t} {y = – 1 + t} end{array}} right.$

c) Phương trình tham số của đường thẳng ${d_3}$ đi qua $N$ và có vectơ pháp tuyến $vec n$ là $2x – y + 7 = 0$

d) Phương trình tham số của đường thẳng ${d_4}$ đi qua $M$ và có vectơ chỉ phương $vec u$ là $left{ {begin{array}{llllllllllllllllllll} {x = 1 + t} {y = 2 + t} end{array}} right.$

Câu 4. Xác định tính đúng, sai của các khẳng định sau:

a) Cho ${x^2} – {y^2} + 2x + 6y – 3 = 0$ không phải là phương trình đường tròn.

b) Cho ${x^2} + {y^2} – 8x + 2y – 15 = 0$ là phương trình đường tròn có tâm $Ileft( {4; – 1} right)$, bán kính $R = 4sqrt 2 $.

c) Cho ${x^2} + {y^2} – 14x + 4y + 55 = 0$ là phương trình đường tròn có tâm $Ileft( {7; – 2} right)$, bán kính $R = 2sqrt 2 $.

d) ${x^2} + {y^2} – 2x – 4y – 44 = 0$ là phương trình đường tròn có tâm $Ileft( {1;2} right)$, bán kính $R = 3$.

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 5.

Câu 1. Một cửa hàng bán tất thông báo giá bán như sau: mua một đôi giá 10000 đồng; mua hai đội thì đôi thứ hai được giảm giá 10% ; mua từ đôi thứ ba trở lên thì giá của mỗi đôi từ đôi thứ hai trở lên được giảm 15% so với đôi thứ nhất. Hỏi với 100 nghìn đồng thì mua được tối đa được bao nhiêu đôi tất?

Câu 2. Tính tổng nghiệm của phương trình sau: $sqrt {{x^2} + 2x + 4} = sqrt {2 – x} $

Câu 3. Xác định hàm số bậc hai có đồ thị là parabol $left( P right)$ biết: $left( P right):y = a{x^2} + bx + 2$ đi qua điểm $Aleft( {1;0} right)$ và có trục đối xứng $x = frac{3}{2}$

Câu 4. Cho các vectơ $vec a = left( {2;0} right),vec b = left( { – 1;frac{1}{2}} right),vec c = left( {4; – 6} right)$. Biểu diễn vectơ $vec c$ theo cặp vectơ không cùng phương $vec a,vec b$

Câu 5. Cho tam giác $ABC$ với $Aleft( { – 1; – 2} right)$ và phương trình đường thẳng chứa cạnh $BC$ là $x – y + 4 = 0$.

a) Viết phương trình đường cao $AH$ của tam giác

b) Viết phương trình đường trung bình ứng với cạnh đáy $BC$ của tam giác

LỜI GIẢI CHI TIẾT

Phần 1. Câu trắc nghiệm nhiều phương án chọn.

Thí sinh trả lời tù câu l đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phuơng án đúng nhất.

1 2 3 4 5 6 C C D B C A 7 8 9 10 11 12 C C D D C B

Phần 2. Câu trắc nghiệm đúng sai.

Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 1. Cho các hàm số sau. Khi đó:

a) Hàm số $y = – 2{x^2} + 3x – frac{1}{2}$ là hàm số bậc hai

b) Hàm số $y = 8{x^4} – 5{x^2} + 0,5$ là hàm số bậc hai

c) Hàm số $y = 9{x^3} + 3{x^2} – x – frac{1}{2}$ là hàm số bậc hai

d) Hàm số $y = left( {{m^2} + 6m + 10} right){x^2} + left( {m + 1} right)x – 3{m^2} + 1$ ($m$ là tham số $)$ là hàm số bậc hai

Lời giải

a) Đúng b) Sai c) Sai d) Đúng

a) Là hàm số bậc hai với $a = – 2,b = 3,c = – frac{1}{2}$.

b) Không phải là hàm số bậc hai vì chứa ${x^4}$.

c) Không phải là hàm số bậc hai vì chứa ${x^3}$.

d) Là hàm số bậc hai với $a = {m^2} + 6m + 10 = {(m + 3)^2} + 1 > 0,;b = m + 1,c = – 3{m^2} + 1$.

Câu 2. Cho phương trình $sqrt {2{x^2} + x + 3} = – x – 5left( * right)$

a) Bình phương 2 vế của phương trình ta được ${x^2} – 9x – 22 = 0$

b) Phương trình $sqrt {2{x^2} + x + 3} = – x – 5$ và phương trình ${x^2} – 9x – 22 = 0$ có chung tập nghiệm

c) $x = 11;x = – 2$ là nghiệm của phương trình $left( * right)$

d) Tập nghiệm của phương trình (*) là $S = emptyset $

Lời giải

a) Đúng b) Sai c) Sai d) Đúng

$sqrt {2{x^2} + x + 3} + x + 5 = 0 Leftrightarrow sqrt {2{x^2} + x + 3} = – x – 5$.

Bình phương hai vế của phương trình, ta được:

$2{x^2} + x + 3 = {x^2} + 10x + 25 Rightarrow {x^2} – 9x – 22 = 0 Rightarrow x = 11$ hoặc $x = – 2$

Thay lần lượt $x = 11;x = – 2$ vào phương trình đã cho, ta thấy hai giá trị này đều không thỏa mãn. Do đó, phương trình đã cho vô nghiệm.

Vậy tập nghiệm của phương trình đã cho là $S = emptyset $

Câu 3. Trong mặt phẳng tọa độ $Oxy$, cho $Mleft( {1;2} right),Nleft( {3; – 1} right),vec nleft( {2; – 1} right),vec uleft( {1;1} right)$.

a) Phương trình tổng quát của đường thẳng ${d_1}$ đi qua $M$ và có vectơ pháp tuyến $vec n$ là $2x – y = 0$

b) Phương trình tham số của đường thẳng ${d_2}$ đi qua $N$ và có vectơ chỉ phương $vec u$ là $left{ {begin{array}{llllllllllllllllllll} {x = 3 + t} {y = – 1 + t} end{array}} right.$

c) Phương trình tham số của đường thẳng ${d_3}$ đi qua $N$ và có vectơ pháp tuyến $vec n$ là $2x – y + 7 = 0$

d) Phương trình tham số của đường thẳng ${d_4}$ đi qua $M$ và có vectơ chỉ phương $vec u$ là $left{ {begin{array}{llllllllllllllllllll} {x = 1 + t} {y = 2 + t} end{array}} right.$

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Đúng

a) Đường thẳng ${d_1}$ có phương trình tổng quát là: $2left( {x – 1} right) – left( {y – 2} right) = 0 Leftrightarrow 2x – y = 0$.

b) Đường thẳng ${d_2}$ có phương trình tham số là: $left{ {begin{array}{llllllllllllllllllll} {x = 3 + t} {y = – 1 + t} end{array}} right.$

c) $2left( {x – 3} right) – left( {y + 1} right) = 0 Leftrightarrow 2x – y – 7 = 0$

d) Phương trình tham số của đường thẳng ${d_4}$ đi qua $M$ và có vectơ chỉ phương $vec u$ là $left{ {begin{array}{llllllllllllllllllll} {x = 1 + t} {y = 2 + t} end{array}} right.$

Câu 4. Xác định tính đúng, sai của các khẳng định sau:

a) Cho ${x^2} – {y^2} + 2x + 6y – 3 = 0$ không phải là phương trình đường tròn.

b) Cho ${x^2} + {y^2} – 8x + 2y – 15 = 0$ là phương trình đường tròn có tâm $Ileft( {4; – 1} right)$, bán kính $R = 4sqrt 2 $.

c) Cho ${x^2} + {y^2} – 14x + 4y + 55 = 0$ là phương trình đường tròn có tâm $Ileft( {7; – 2} right)$, bán kính $R = 2sqrt 2 $.

d) ${x^2} + {y^2} – 2x – 4y – 44 = 0$ là phương trình đường tròn có tâm $Ileft( {1;2} right)$, bán kính $R = 3$.

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

a) Không phải là phương trình đường tròn.

b) Là phương trình đường tròn có tâm $Ileft( {4; – 1} right)$, bán kính $R = 4sqrt 2 $.

c) Không phải là phương trình đường tròn.

d) là phương trình đường tròn có tâm $Ileft( {1;2} right)$, bán kính $R = 7$.

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Câu 1. Một cửa hàng bán tất thông báo giá bán như sau: mua một đôi giá 10000 đồng; mua hai đội thì đôi thứ hai được giảm giá $10% $; mua từ đôi thứ ba trở lên thì giá của mỗi đôi từ đôi thứ hai trở lên được giảm 15% so với đôi thứ nhất. Hỏi với 100 nghìn đồng thì mua được tối đa được bao nhiêu đôi tất?

Lời giải

Gọi $x in {mathbb{N}^*}$ là số đôi tất bán ra, $fleft( x right)$ là giá tiền bán $x$ đôi tất, ta có:

$fleft( x right) = left{ {begin{array}{llllllllllllllllllll} {10000}&{;khi;x = 1,} {10000 + 10000 cdot 90% }&{;khi;x = 2,} {10000 + left( {x – 1} right) cdot 10000 cdot 85% }&{;khi;x geqslant 3} end{array}} right.$

Ta có $10000 + left( {x – 1} right) cdot 8500 leqslant 100000$ suy ra $x leqslant frac{{197}}{{17}} approx 11,59$.

Vậy với 100 nghìn đồng có thể mua tối đa được 11 đôi tất.

Câu 2. Tính tổng nghiệm của phương trình sau: $sqrt {{x^2} + 2x + 4} = sqrt {2 – x} $

Cách giải 1:

Lời giải:

Bình phương hai vế phương trình, ta được:

${x^2} + 2x + 4 = 2 – x Leftrightarrow {x^2} + 3x + 2 = 0 Leftrightarrow x = – 1 vee x = – 2$.

Thay giá trị $x = – 1$ vào phương trình: $sqrt 3 = sqrt 3 $ (thỏa mãn).

Thay giá trị $x = – 2$ vào phương trình: $sqrt 4 = sqrt 4 $ (thỏa mãn).

Vậy tập nghiệm phương trình là $S = left{ { – 1; – 2} right}$.

Cách giải 2:

Ta có: $sqrt {{x^2} + 2x + 4} = sqrt {2 – x} Leftrightarrow left{ {begin{array}{llllllllllllllllllll} {2 – x geqslant 0} {{x^2} + 2x + 4 = 2 – x} end{array}} right.$

$ Leftrightarrow left{ {begin{array}{llllllllllllllllllll} {x leqslant 2} {{x^2} + 3x + 2 = 0} end{array} Leftrightarrow left{ {begin{array}{llllllllllllllllllll} {x leqslant 2} {x = – 1 vee x = – 2} end{array} Leftrightarrow left[ {begin{array}{llllllllllllllllllll} {x = – 1} {x = – 2} end{array}} right.} right.} right.$

Vậy tập nghiệm phương trình là $S = left{ { – 1; – 2} right}$.

Câu 3. Xác định hàm số bậc hai có đồ thị là parabol $left( P right)$ biết: $left( P right):y = a{x^2} + bx + 2$ đi qua điểm $Aleft( {1;0} right)$ và có trục đối xứng $x = frac{3}{2}$

Lời giải

(P) qua $Aleft( {1;0} right)$ nên $0 = a{.1^2} + b.1 + 2 Leftrightarrow a + b = – 2$ (1).

$left( P right)$ có trục đối xứng $x = – frac{b}{{2a}} = frac{3}{2} Rightarrow 3a + b = 0$ (2). Từ (1) và (2) suy ra: $a = 1,b = – 3$.

Vậy hàm số bậc hai được xác định: $y = {x^2} – 3x + 2$.

Câu 4. Cho các vectơ $vec a = left( {2;0} right),vec b = left( { – 1;frac{1}{2}} right),vec c = left( {4; – 6} right)$. Biểu diễn vectơ $vec c$ theo cặp vectơ không cùng phương $vec a,vec b$

Lời giải

Gọi: $vec c = xvec a + yvec bleft( {x,y in mathbb{R}} right)$. Ta có: $left{ {begin{array}{llllllllllllllllllll} {4 = x cdot 2 + yleft( { – 1} right)} { – 6 = x cdot 0 + y cdot frac{1}{2}} end{array} Leftrightarrow left{ {begin{array}{llllllllllllllllllll} {x = – 4} {y = – 12} end{array}} right.} right.$

Vậy $vec c = – 4vec a – 12vec b$.

Câu 5. Cho tam giác $ABC$ với $Aleft( { – 1; – 2} right)$ và phương trình đường thẳng chứa cạnh $BC$ là $x – y + 4 = 0$.

a) Viết phương trình đường cao $AH$ của tam giác

b) Viết phương trình đường trung bình ứng với cạnh đáy $BC$ của tam giác

Lời giải

a) Đường cao $AH$ vuông góc với $BC$ nên nhận $vec u = left( {1; – 1} right)$ làm vectơ chỉ phương, suy ra $AH$ có một vectơ pháp tuyến là $vec n = left( {1;1} right)$.

Phương trình tổng quát $AH:1left( {x + 1} right) + 1left( {y + 2} right) = 0$ hay $x + y + 3 = 0$.

b) Chọn điểm $Kleft( {0;4} right)$ thuộc $BC$, gọi $E$ là trung điểm đoạn $AK$ nên $Eleft( { – frac{1}{2};1} right)$.

Gọi $d$ là đường trung bình ứng với cạnh đáy $BC$ của tam giác $ABC$, suy ra $d$ qua $E$ và có một vectơ pháp tuyến $overrightarrow {n’} = left( {1; – 1} right)$.

Phương trình tổng quát $d:1left( {x + frac{1}{2}} right) – 1left( {y – 1} right) = 0$ hay $2x – 2y + 3 = 0$.

Previous Post

15 Đề thi Giữa kì 1 Toán 6 Chân trời sáng tạo năm 2025 (có đáp án)

Next Post

Nhắc nhỡ hay nhắc nhở từ nào đúng chính tả? Nghĩa là gì?

Tranducdoan

Tranducdoan

Trần Đức Đoàn sinh năm 1999, anh chàng đẹp trai đến từ Thái Bình. Hiện đang theo học và làm việc tại trường cao đẳng FPT Polytechnic

Related Posts

Tích Phân Hàm Ẩn: Lý Thuyết Và Bài Tập Vận Dụng Từ Cơ Bản Đến Nâng Cao

by Tranducdoan
09/01/2026
0
0

1. Tích phân hàm ẩn là gì? Trong chương trình toán 12, các bạn học sinh sẽ được làm quen...

TP.HCM đưa phương án giải bài toán chung cư cũ nát, hỗ trợ 10 tỷ chi phí di dời

by Tranducdoan
09/01/2026
0
0

Tại kỳ họp thứ 2 HĐND TPHCM, nhiệm kỳ 2021-2026, chiều 24/7, các đại biểu HĐND TP.HCM thông qua Nghị...

4 cách giải phương trình vô tỉ cực hay

by Tranducdoan
09/01/2026
0
0

Cách giải phương trình vô tỉ lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp...

Lý thuyết, công thức về Bất đẳng thức bunhiacopxki

by Tranducdoan
09/01/2026
0
0

Bất đẳng thức Bunhiacopxki là một trong những nhánh quan trọng của bất đẳng thức Cauchy-Schwarz. Bất đẳng thức này...

Load More
Next Post

Nhắc nhỡ hay nhắc nhở từ nào đúng chính tả? Nghĩa là gì?

  • Trending
  • Comments
  • Latest
File đề thi thử lịch sử thpt quốc gia 2024 2025 có đáp án

80 File đề thi thử lịch sử thpt quốc gia 2026 2025 có đáp án

16/12/2025
Viết bài văn kể lại câu chuyện về một nhân vật lịch sử mà em đã đọc đã nghe lớp 4 ngắn gọn

Kể lại câu chuyện về một nhân vật lịch sử lớp 4 ngắn gọn

27/03/2025
viet-bai-van-ke-ve-cau-chuyen-ma-em-yeu-thich-ngan-gon

Viết bài văn kể lại một câu chuyện ngắn gọn nhất 16 mẫu

16/11/2024
De Thi Cuoi Hoc Ki 1 Ngu Van 12 Nam 2021 2022 So Gddt Bac Giang Page 0001 Min

Đề thi học kì 1 lớp 12 môn văn năm học 2021-2022 tỉnh Bắc Giang

0
De Thi Cuoi Ki 1 Mon Van 9 Huyen Cu Chi 2022

Đề thi văn cuối kì 1 lớp 9 huyện Củ Chi năm học 2022 2023

0
Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

Dự án tốt nghiệp FPT Polytechnic ngành Digital Marketing

0

Làm Xong hay Làm Song đúng chính tả?

09/01/2026

Tích Phân Hàm Ẩn: Lý Thuyết Và Bài Tập Vận Dụng Từ Cơ Bản Đến Nâng Cao

09/01/2026

2k8 năm nay lớp mấy, năm nào thi đại học?

09/01/2026
Xoilac TV trực tiếp bóng đá Socolive trực tiếp 789bet https://pihu.in.net/
Tài Liệu Học Tập

Copyright © 2022 Tài Liệu Học Tập.

Chuyên Mục

  • Đề Thi
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Tham Gia Group Tài Liệu Học Tập

No Result
View All Result
  • Đề Thi
  • Lớp 12
    • Lịch Sử Lớp 12
    • Địa Lí Lớp 12
    • Ngữ Văn Lớp 12
    • GD KTPL Lớp 12
    • Toán Lớp 12
    • Tiếng Anh Lớp 12
    • Hóa Học Lớp 12
    • Sinh Học Lớp 12
    • Vật Lí Lớp 12
  • Lớp 11
    • Toán Lớp 11
    • Ngữ Văn Lớp 11
    • Tiếng Anh Lớp 11
    • Hóa Học Lớp 11
    • Sinh Học Lớp 11
    • Vật Lí Lớp 11
    • Lịch Sử Lớp 11
    • Địa Lí Lớp 11
    • GDCD Lớp 11
  • Lớp 10
    • Toán Lớp 10
    • Ngữ Văn Lớp 10
    • Tiếng Anh Lớp 10
    • Hóa Học Lớp 10
    • Sinh Học Lớp 10
    • Vật Lí Lớp 10
    • Lịch Sử Lớp 10
    • Địa Lí Lớp 10
    • GDKTPL Lớp 10
    • Công nghệ lớp 10
    • Tin Học Lớp 10
  • Lớp 9
    • Toán Lớp 9
    • Ngữ Văn Lớp 9
    • Tiếng Anh Lớp 9
    • Lịch sử và địa lý lớp 9
    • Khoa Học Tự Nhiên Lớp 9
    • GDCD Lớp 9
  • Lớp 8
    • Toán Lớp 8
    • Ngữ Văn Lớp 8
    • Tiếng Anh Lớp 8
    • Lịch sử và địa lý lớp 8
    • Khoa Học Tự Nhiên Lớp 8
    • GDCD 8
  • Lớp 7
    • Toán Lớp 7
    • Văn Lớp 7
    • Tiếng Anh Lớp 7
    • Lịch Sử Và Địa Lí Lớp 7
    • Khoa Học Tự Nhiên Lớp 7
  • Lớp 6
    • Toán Lớp 6
    • Văn Lớp 6
    • Tiếng Anh lớp 6
    • Lịch Sử và Địa Lí Lớp 6
    • Khoa Học Tự Nhiên lớp 6
  • Lớp 5
    • Toán lớp 5
    • Tiếng Việt Lớp 5
    • Tiếng Anh Lớp 5
    • Lịch Sử và Địa Lí Lớp 5
  • Lớp 4
    • Toán lớp 4
    • Tiếng Việt Lớp 4
    • Tiếng Anh Lớp 4
    • Lịch Sử và Địa Lí Lớp 4
  • Lớp 3
    • Toán lớp 3
    • Tiếng Anh Lớp 3
    • Tiếng Việt Lớp 3
  • Mẹo Hay
  • Tin tức
  • Liên Hệ

Copyright © 2022 Tài Liệu Học Tập.