Bài viết Lý thuyết Hàm số lũy thừa lớp 12 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hàm số lũy thừa.
Lý thuyết Hàm số lũy thừa
(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST
A. Tóm tắt lý thuyết
1. Định nghĩa: Hàm số y = xα với α ∈ R được gọi là hàm số lũy thừa.
2. Tập xác định: Tập xác định của hàm số y = xα là:
• D = R nếu α là số nguyên dương.
• D = R {0} với α nguyên âm hoặc bằng 0
• D = (0; +∝) với α không nguyên.
3. Đạo hàm: Hàm số y = xα có đạo hàm với mọi x > 0 và (xα)’ = α.xα – 1.
4. Tính chất của hàm số lũy thừa trên khoảng (0; +∝).
y = xα, α > 0 y = xα, α < 0 a. Tập khảo sát: (0; +∝) a. Tập khảo sát: (0; +∝)
b. Sự biến thiên
+ y’ = αxα – 1 > 0, ∀x > 0
+ Giới hạn đặc biệt
+ Tiệm cận: không có
b. Sự biến thiên
+ y’ = αxα – 1 < 0, ∀x > 0
+ Giới hạn đặc biệt
+ Tiệm cận: không có
– Trục 0x là tiệm cận ngang
– Trục 0y là tiệm cận đứng.
c. Bảng biến thiên c. Bảng biến thiên
d. Đồ thị:
Đồ thị của hàm số lũy thừa y = xα luôn đi qua điểm I(1; 1)
Lưu ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó. Chẳng hạn: y = x3, y = x-2, y = xπ
B. Kĩ năng giải bài tập
Vận dụng thành thạo định nghĩa, tập xác định, cách tính đạo hàm, tính chất của hàm số lũy thừa.
(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST
Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:
- Lý thuyết Lũy thừa
- Lý thuyết Hàm số lũy thừa
- Lý thuyết Lôgarit
- Lý thuyết Hàm số mũ. Hàm số lôgarit
- Lý thuyết Phương trình mũ và phương trình lôgarit
- Lý thuyết Bất phương trình mũ và lôgarit
- Lý thuyết tổng hợp chương Hàm số lũy thừa, Hàm số mũ, Hàm số logarit





